首页> 外文学位 >Stress and strain localization modeling of particle reinforced metal matrix composites.
【24h】

Stress and strain localization modeling of particle reinforced metal matrix composites.

机译:颗粒增强金属基复合材料的应力和应变局部化模型。

获取原文
获取原文并翻译 | 示例

摘要

Particle reinforced metal matrix composites (PR MMCs) are characterized by a distribution of particles in a continuous metal matrix. The objective of this thesis is to screen the effects of model features on local stress and strain fields and document how they lead to stress and strain localization.; A factorial design of experiments methodology (DOE) is used to systematically compare the effect that features of 2D and 3D unit cell finite element models have on the predicted response of PR MMCs and develop an understanding of the limitations imposed by these features. Common features of all unit cell models for the DOE study are a particle volume fraction of 0.2 and linear elastic particles. Six features are varied to create 16 test cases: model type (plane stress, plane strain, generalized plane strain, and three dimensional), loading condition (tension, compression, shear, and biaxial tension), particle shape (ellipsoid and block), matrix type (linear elastic and elastic-perfectly plastic), thermal residual stress (present and not present), and particle aspect ratio (1 and 3). The quantitative effects of the features are used to screen their relative importance for prediction of: apparent modulus, macroscopic stress, equivalent plastic strain, maximum principal stress, and hydrostatic stress. A 3D multi-particle model (3D-MP) of a random particle distribution is compared with plane stress, plane strain, and generalized plane strain models to study the effect of model selection for a realistic particle distribution. Finally, results from a 3D model containing a cubic array of spherical particle clusters (3D-CLUS) are compared with those for random and periodic microstructures.; The results of the DOE study indicate that model selection sensitivity varies for different loading conditions. Stress and plastic strain fields and the strength-differential effect are significantly influenced by model selection and particle aspect ratio. Comparison of 3D and 2D multi-particle models indicates that while the predicted overall stress-strain responses are very similar, the local stress and strain fields are much different. The 2D models predict plastic strain to localize in diagonal bands much more than does the 3D model. It is these local fields that are important for ductility. The model of a clustered microstructure predicts a stiffer response with more hardening than do the models of random and periodic microstructures. (Abstract shortened by UMI.)
机译:颗粒增强金属基复合材料(PR MMC)的特征在于颗粒在连续金属基体中的分布。本文的目的是筛选模型特征对局部应力和应变场的影响,并记录它们如何导致应力和应变局部化。实验方法的因子设计(DOE)用于系统地比较2D和3D晶胞有限元模型的特征对PR MMC预测响应的影响,并加深对这些特征施加的局限性的理解。 DOE研究中所有晶胞模型的共同特征是粒子体积分数为0.2和线性弹性粒子。改变六个特征以创建16个测试用例:模型类型(平面应力,平面应变,广义平面应变和三维),加载条件(拉伸,压缩,剪切和双轴拉伸),颗粒形状(椭圆形和块状),基质类型(线性弹性和完全弹性塑性),热残余应力(存在和不存在)以及颗粒长宽比(1和3)。这些特征的量化效果用于筛选其相对重要性,以预测:表观模量,宏观应力,等效塑性应变,最大主应力和静水压力。将随机粒子分布的3D多粒子模型(3D-MP)与平面应力,平面应变和广义平面应变模型进行比较,以研究模型选择对实际粒子分布的影响。最后,将包含球形粒子簇立方阵列(3D-CLUS)的3D模型的结果与随机和周期性微观结构的结果进行比较。 DOE研究的结果表明,模型选择灵敏度随不同的加载条件而变化。应力和塑性应变场以及强度-微分效应受模型选择和颗粒长宽比的影响很大。 3D和2D多粒子模型的比较表明,尽管预测的整体应力-应变响应非常相似,但局部应力和应变场却相差甚远。与3D模型相比,2D模型预测塑性应变将更多地定位在对角带中。这些局部字段对于延展性很重要。与随机和周期性的微观结构模型相比,簇状的微观结构模型预测的硬化程度更高,而刚性更高。 (摘要由UMI缩短。)

著录项

  • 作者

    Shen, Hui.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 184 p.
  • 总页数 184
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号