首页> 外文学位 >Techniques for extended modeling of cardiac morphogenesis in the embryonic chick.
【24h】

Techniques for extended modeling of cardiac morphogenesis in the embryonic chick.

机译:用于扩展雏鸡心脏形态发生的建模技术。

获取原文
获取原文并翻译 | 示例

摘要

Computational models that simulate the biophysical mechanisms of early cardiac morphogenesis in the embryonic chick heart have been used to demonstrate the influence of biomechanics in cardiac development. However, algorithms for the automatic coding of material subroutines that govern the constitutive relations of biological tissues, generating realistic: geometries, transferring solution results correctly during analysis continuation procedures, and for including advanced biomechanical components of the developing cardiac environment limit current models from demonstrating the role biomechanics has on normal cardiac development. The purpose of our work is to develop and demonstrate novel techniques to resolve each of the aforementioned limitations and use new techniques to model the hypothetical role of biormechanics in cardiac development.;First, we use the symbolic mathematics software Mathematica and nonlinear continuum mechanics to automatically generate FORTRAN based user material subroutines. The Mathematica notebook only requires the definition of a pseudoelastic strain energy function to generate the current Cauchy stress and Tensor of Elasticity for all integration points in the model. We demonstrate the accuracy of the automatically generated code using uniaxial, equibiaxial, and simple shear tests of materials defined by a Fung-Orthotropic pseudoelastic strain energy function. The code is also capable of modeling continuum growth, and we therefore test it by curling and twisting a bilayered bar. The Mathematica user material subroutine generator automatically generated user material subroutines that performed well for standard tests in hyperelasticity and complex problems in biomechanics. Therefore, we made the code freely available as supplemental material to an article we published in the Journal of Biomechanical Engineering.;We then describe the generation of realistic geometries by demonstrating the benefits and drawbacks to voxel based reconstructions. To resolve the limitations of the pure voxel based mesh, we present both results smoothing and mesh smoothing algorithms. We adapt the theory of membranes to design an algorithm, which recalculates the results on the boundaries of a pure voxel based mesh. Additionally, we implement Laplacian band-pass smoothing to modify the pure voxel based mesh, and thus generate a new smoothed geometric mesh. We conclude that results recalculation is only valid if the radius of curvatures represented in the model are large compared to voxel size. However, the mesh smoothing technique used here provides a realistic valid mesh, which can be used in nonlinear analyses.;Next we outline the standard technique for solution transfer and demonstrate its limitation when transferring field discontinuities. We develop a novel solution transfer scheme that reduces the diffusion of solution fields during analysis transfer. We demonstrate the benefits of our novel solution transfer technique in a simple growth based example that relates to cardiac morphogenesis.;Finally, we include the presence of the splanchnopleure, implement cohesive contact to simulate fusion of the omphalomesenteric veins, include element deletion to simulate the rupture of the dorsal mesocardium, and recast the developmental biomechanics of early cardiac morphogenesis using a nonlinear explicit dynamics solver. The new computational model extends previously studied mechanisms of cardiac morphogenesis to study c-looping in a single simulation. We maintain the growth stretches used to simulate normal development, while we independently eliminate the major structural components of the heart model to provide secondary validation of the hypothesized growth mechanisms of normal development. The predicted deformation, stress, and strain of the extended model are qualitatively and quantitatively agreeable compared to in vivo observations of cardiac development in the embryonic chick.;The algorithms we describe and implement in this work extend the capabilities of current computational models in describing the biomechanics of cardiac morphogenesis. We use a variety of numerical tools to overcome the limitations of current models, and though our focus is on cardiac development, these tools are beneficial for studying related problems in growth and remodeling.
机译:模拟胚胎雏鸡心脏早期形态发生的生物物理机制的计算模型已用于证明生物力学对心脏发育的影响。但是,用于控制生物组织的本构关系的材料子例程的自动编码,产生逼真的几何形状,在分析连续过程中正确传递溶液结果的算法以及包括正在发展的心脏环境中的先进生物力学组件在内的算法,都限制了当前模型的论证。生物力学对正常心脏发育具有重要作用。我们工作的目的是开发和演示解决上述每种局限性的新技术,并使用新技术来模拟生物力学在心脏发育中的假设作用。首先,我们使用符号数学软件Mathematica和非线性连续体力学来自动生成基于FORTRAN的用户资料子例程。 Mathematica笔记本仅需要定义伪弹性应变能函数即可为模型中的所有积分点生成当前的柯西应力和弹性张量。我们演示了使用单轴,等双轴和简单剪切试验对由Fung-Orthotropic准伪弹性应变能函数定义的材料进行自动编码的准确性。该代码还能够对连续增长进行建模,因此我们通过卷曲和扭曲双层条来对其进行测试。 Mathematica用户材料子例程生成器会自动生成用户材料子例程,这些子例程在超弹性和生物力学复杂问题的标准测试中表现出色。因此,我们免费提供了该代码作为补充材料,作为我们在《生物力学工程杂志》上发表的文章的补充。然后,我们通过演示基于体素的重建的优缺点来描述实际几何形状的生成。为了解决基于纯体素的网格的局限性,我们同时提出了结果平滑和网格平滑算法。我们采用膜理论来设计算法,该算法将重新计算基于纯体素的网格边界上的结果。此外,我们实现了拉普拉斯带通平滑以修改基于纯体素的网格,从而生成新的平滑几何网格。我们得出结论,仅当模型中表示的曲率半径与体素大小相比较大时,结果重新计算才有效。但是,这里使用的网格平滑技术提供了一个现实的有效网格,可以在非线性分析中使用。我们开发了一种新颖的溶液转移方案,可减少分析转移过程中溶液域的扩散。我们在一个与心脏形态发生有关的基于生长的简单示例中证明了我们新颖的溶液转移技术的优势。最后,我们包括了内脏闭锁的存在,实现了内聚性接触以模拟全肠胃静脉的融合,包括元素缺失以模拟使用非线性显式动力学求解器,破坏背心中膜,并重铸早期心脏形态发生的发育生物力学。新的计算模型将先前研究过的心脏形态发生机制扩展为在单个模拟中研究c环。我们维持用于模拟正常发育的生长范围,同时我们独立消除心脏模型的主要结构成分,以对正常发育的假设生长机制进行二次验证。与体内观察到的雏鸡心脏发育相比,扩展模型的预测变形,应力和应变在定性和定量上是一致的。我们在这项工作中描述和实现的算法扩展了当前计算模型描述模型的能力。心脏形态发生的生物力学。我们使用各种数值工具来克服当前模型的局限性,尽管我们专注于心脏发育,但这些工具对于研究生长和重塑中的相关问题非常有用。

著录项

  • 作者

    Young, Jonathan Michael.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Engineering Biomedical.;Engineering Mechanical.;Biophysics Biomechanics.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号