首页> 外文学位 >Ultra low thermal conductivity in layered disordered crystalline materials.
【24h】

Ultra low thermal conductivity in layered disordered crystalline materials.

机译:层状无序结晶材料中的超低热导率。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation presents an alternative route to achieve ultralow thermal conductivity in a dense solid. Thin films of disordered layered crystalline materials were deposited using Modulated Elemental Reactants (MER) method. Cross-plane thermal conductivity was measured using Time-Domain Thermo Reflectance (TDTR) method; elastic properties were investigated using picosecond acoustics. The results are applied to reducing the thermal conductivity in misfit layer materials and multilayers containing disordered layered crystalline materials.;The cross-plane thermal conductivity of thin films of WSe2 is as small as 0.05 W m-1 K-1 at room temperature, 30 times smaller than the c-axis thermal conductivity of single-crystal WSe2 and a factor of 6 smaller than the predicted minimum thermal conductivity for this material. The ultralow thermal conductivity is attributed to the anisotropic bonding of the layered WSe2 and orientational disorder in the stacking of well-crystallized WSe2 sheets along the direction perpendicular to the surface. Disordering of the layered structure by ion bombardment increases the thermal conductivity.;I measured the room-temperature, cross-plane thermal conductivities and longitudinal speeds of sound of misfit-layer dichalcogenide films [(PbSe) m (TSe2)n] i (T = W or Mo, m = 1-5, n = 1-5) synthesized by the MER. The thermal conductivities of these nanoscale layered materials are 5--6 times lower than the predicted minimum thermal conductivity Λmin of PbSe. Thermal conductivity decreases with increasing content of the main source of anisotropy in the sample, the layered chalcogenide, and it is largely unaffected by variations in superlattice period.;I investigated the lower limit to the lattice thermal conductivity of Bi2Te3 and related materials using thin films synthesized by MER. The thermal conductivities of single layer films of Bi2Te 3, Bi2Te3 and Sb-doped Bi2Te 3 and multilayer films of (Bi2Te3)m(TiTe 2)n and [(BixSb1-x)2Te 3]m(TiTe2)n are measured by TDTR; the thermal conductivity data are compared to a Debye-Callaway model of heat transport by acoustic phonons. The homogeneous nanocrystalline films have average grains sizes 30d100 nm as measured by the width of the (003) x-ray diffraction peak. Multilayer films incorporating turbostratic TiTe 2 enable studies of the effective thermal conductivity of Bi2Te 3 layers as thin as 2 nm. In the limit of small grain size or layer thickness, the thermal conductivity of Bi2Te3 approaches the predicted minimum thermal conductivity of 0.31 W m-1 K-1. The dependence of the thermal conductivity on grain size is in good agreement with the Debye-Callaway model. The use of alloy (Bi,Sb)2Te3 layers further reduces the thermal conductivity of the nanoscale layers to as low as 0.20 W m-1 K -1.
机译:本文提出了一种在致密固体中实现超低导热率的替代方法。使用调制元素反应器(MER)方法沉积无序层状晶体材料的薄膜。跨面热导率是使用时域热反射(TDTR)方法测量的;弹性特性使用皮秒声学进行了研究。该结果可用于降低错配层材料和包含无序层状晶体材料的多层的热导率。WSe2薄膜在室温,30°C下的横截面热导率小至0.05 W m-1 K-1。比单晶WSe2的c轴导热系数小3倍,比该材料的预测最小导热系数小6倍。超低热导率归因于层状WSe2的各向异性键合以及沿垂直于表面方向堆叠的结晶良好的WSe2薄板的取向无序。离子轰击使层状结构紊乱,增加了热导率。;我测量了室温,横断面的热导率和错配层二卤化硫薄膜[(PbSe)m(TSe2)n] i(T的纵向声速= W或Mo,m = 1-5,n = 1-5)由MER合成。这些纳米层状材料的热导率比预测的PbSe最小热导率Δmin低5--6倍。导热系数随着样品中主要的各向异性源(层状硫族化物)含量的增加而降低,并且不受超晶格周期变化的影响。;我使用薄膜研究了Bi2Te3和相关材料的晶格导热系数的下限由MER合成。通过TDTR测量Bi2Te 3,Bi2Te3和掺Sb的Bi2Te 3的单层膜和(Bi2Te3)m(TiTe 2)n和[(BixSb1-x)2Te 3] m(TiTe2)n的多层膜的热导率。 ;将热导率数据与声子通过热传递的Debye-Callaway模型进行比较。如通过(003)X射线衍射峰的宽度测量,均质纳米晶体膜具有30 <d <100nm的平均晶粒尺寸。掺有涡轮层TiTe 2的多层薄膜可以研究Bi2Te 3薄至2 nm的有效导热系数。在小的晶粒尺寸或层厚度的限制下,Bi 2 Te 3的热导率接近预测的最小热导率0.31 W m-1 K-1。导热系数对晶粒尺寸的依赖性与Debye-Callaway模型非常吻合。合金(Bi,Sb)2 Te 3层的使用进一步将纳米级层的热导率降低至低至0.20W m-1 K -1。

著录项

  • 作者

    Chiritescu, Catalin.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering General.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 110 p.
  • 总页数 110
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号