首页> 外文学位 >Superhydrophobic Surfaces for Liquid Drag Reduction: Design, Fabrication, and Slip Testing.
【24h】

Superhydrophobic Surfaces for Liquid Drag Reduction: Design, Fabrication, and Slip Testing.

机译:用于减少液体阻力的超疏水表面:设计,制造和滑动测试。

获取原文
获取原文并翻译 | 示例

摘要

It is well established that certain superhydrophobic surfaces can effectively reduce frictional drag of liquid flows in nano- and micro-scale fluidic systems. However, whether or not they can eventually be developed to be effective for regular-scale (i.e., millimeters and above) fluidic systems has remained uncertain. The goal of the research described in this dissertation is to advance the understanding of superhydrophobic surfaces for liquid slips and ultimately develop slip surfaces that reduce drag even for macro (i.e., large) fluidic systems.;To obtain a meaningful drag reduction in a macro fluidic system, a slip length comparable to the length scale of the macro fluidic system is required. Considering the large gap between the state of the art (i.e., ∼20 microns) and the required (i.e., > 100 microns), we start by studying how superhydrophobic surfaces produce the slip in a systematic and quantitative manner. First, we investigate how surface parameters affect slip length and provide the design guideline to maximize slip effect. It is shown that slip length increases exponentially with gas fraction and linearly with pitch of posts or grates on two model surfaces. To obtain experimental data that can confirm or disprove the theoretical predictions, however, superhydrophobic surfaces with no defect over the entire sample area (i.e., 6 cm diameter) are necessary --- achieved by developing a specialized lithography process in house. By pushing the surface parameters (i.e., gas fraction and pitch) to the thermodynamic limit of non-wetted (i.e., Cassie) state, we achieve a giant liquid slip of 187 microm.;An investigation into the effect of a surface hierarchy of superhydrophobic surfaces helps us expand the Cassie range and increase the liquid slip even further. Specifically, nanostructures added only onto the sidewalls of microstructures significantly reinforces the stability of the non-wetted state such that we can further increase gas fraction and pitch to achieve slip lengths as large as 400 microm. Interestingly, adding nanostructures on top of the microstructures as well, i.e., nanostructures uniformly over the entire microstructure surface, is found detrimental to the slip length. Giant slip lengths (>100 mum) obtained in the present studies are expected large enough to directly benefit macro fluidic systems.;In real flow conditions, a superhydrophobic surface can be easily impregnated with water by various external instigators (e.g., high liquid pressure, pressure variations, debris), causing the drag reducing effect to be lost (for high pressure) or deteriorate over time (for pressure variation and debris effect). To address this issue, we develop new slip surfaces, on which the non-wetted state can be indefinitely maintained by restoring superhydrophobicity if and when the surface becomes wet, i.e., transitions to Wenzel condition. Our surface consists of hydrophobic microstructures upon a hydrophobic nanostructured bottom surface. Furthermore, the surface has electrodes patterned on the nanostructures for a self-limited electrolytic gas generation. The gas is generated to recover the superhydrophobicity only when and where the microstructures are wet, i.e., with minimal energy consumption. This surface architecture reliably works even under high liquid pressures and on defective surfaces, which can be commonly encountered in practical applications. We expect the approach developed here will lead us to drag reduction in real flow environments.
机译:公认的是,某些超疏水表面可以有效减少纳米级和微米级流体系统中液体流动的摩擦阻力。但是,它们是否最终能够发展成对常规规模(即,毫米及以上)流体系统有效仍然是不确定的。本文所描述的研究目的是为了加深对液滑的超疏水表面的理解,并最终开发出即使在宏观(即大型)流体系统中也能减少阻力的滑面。在系统中,需要与宏观流体系统的长度尺度相当的滑移长度。考虑到现有技术(即约20微米)与所需技术(即> 100微米)之间的巨大差距,我们首先研究超疏水性表面如何以系统和定量的方式产生滑移。首先,我们研究表面参数如何影响滑移长度,并提供设计准则以最大化滑移效果。结果表明,在两个模型表面上,滑移长度随气体分数呈指数增长,并随桩或格栅的间距呈线性增长。然而,为了获得可以证实或反驳理论预测的实验数据,必须通过在室内开发专门的光刻工艺来实现在整个样品区域(即直径6厘米)无缺陷的超疏水表面。通过将表面参数(即气体分数和螺距)推至非润湿(即Cassie)状态的热力学极限,我们获得了187 microm的巨大液滑。;研究超疏水表面层次的影响表面帮助我们扩大了卡西范围,并进一步增加了滑爽度。具体而言,仅添加到微结构侧壁上的纳米结构显着增强了非润湿状态的稳定性,因此我们可以进一步提高气体含量和螺距,以实现最大400微米的滑移长度。有趣的是,发现在微结构的顶部也添加纳米结构,即,在整个微结构表面上均匀地形成纳米结构,这对滑移长度是有害的。在本研究中获得的巨大滑移长度(大于100微米)预计足够大,可以直接使宏观流体系统受益。在实际流动条件下,超疏水表面很容易被各种外部激励器(例如,高液体压力,压力变化,碎屑),导致减阻效果消失(对于高压)或随时间恶化(对于压力变化和碎屑效果)。为了解决该问题,我们开发了新的滑动表面,如果表面变湿,即转变为Wenzel条件,则可以通过恢复超疏水性来无限期地保持其非润湿状态。我们的表面由疏水纳米结构底表面上的疏水微结构组成。此外,该表面具有在纳米结构上构图的电极,用于自限电解气体的产生。仅当微结构是湿的,即在最小的能量消耗时,才产生气体以恢复超疏水性。这种表面结构即使在高压下和在有缺陷的表面上也能可靠地工作,这在实际应用中通常会遇到。我们希望这里开发的方法将导致我们在实际流量环境中减少阻力。

著录项

  • 作者

    Lee, Choongyeop.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 129 p.
  • 总页数 129
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号