首页> 外文学位 >Ion conduction mechanisms in polymer electrolytes for lithium batteries and fuel cells, and crystal engineering of cyclophosphazenes.
【24h】

Ion conduction mechanisms in polymer electrolytes for lithium batteries and fuel cells, and crystal engineering of cyclophosphazenes.

机译:锂电池和燃料电池聚合物电解质中的离子传导机理,以及环磷腈的晶体工程。

获取原文
获取原文并翻译 | 示例

摘要

The work described in this thesis is divided into two parts. The first part focuses on the synthesis and characterization of polyphosphazenes for polymer electrolytes in lithium batteries and fuel cells. The overall goal is to gain an understanding of the ion conduction mechanisms in these materials to aid future designs of ion conducting polymers. The second part of this thesis describes the design and synthesis of cyclophosphazenes with asymmetric spirocyclic side groups. The reaction mechanism for the selective formation of the cis-isomer is proposed and the inclusion behavior of crystals formed by these molecules was studied.;Chapter 1 outlines the fundamental concepts for polymer electrolytes used in lithium batteries and fuel cells. The properties of the polymers that are used as electrolytes and the current understanding of the ion conducting mechanism in these materials are described. Furthermore, the chemistry and applications of phosphazenes is also outlined.;Chapter 2 is a study on the ion conduction mechanism in a polyphosphazene electrolyte. Lithium trifluoromethanesulfonate (LiTf), lithium bis(trifluoromethanesulfonyl)imidate (LiTFSI), magnesium trifluoromethanesulfonate (MgTf2) and magnesium bis(trifluoromethane sulfonyl)imidate (MgTFSI2) were dissolved in poly[bis(2-(2-methoxyethoxy)ethoxy)phosphazene] (MEEP) to compare the effect on solvent-free polymer ionic conductivity of monovalent versus divalent cations, and two anions with different degrees of dissociation.;Chapter 3 describes a synthetic method to produce a proton conductive polymer membrane with a polynorbornane backbone and inorganic-organic cyclic phosphazene pendent groups that bear sulfonic acid units. This hybrid polymer combines the inherent hydrophobicity and flexibility of the organic polymer with the tuning advantages of the cyclic phosphazene to produce a membrane with high proton conductivity and low methanol crossover at room temperature. The ion exchange capacity (IEC), the water swelling behavior of the polymer, and the effect of gamma radiation crosslinking were studied, together with the proton conductivity and methanol permeability of these materials.;Chapter 4 deals with the characterization of water absorbed in proton conducting membranes. The proton conducing membranes were hydrated with 2H2O and 2H T1 NMR relaxation was used to probe the molecular dynamics of the water. The state of water in the proton conducting membrane was correlated to the chemical and morphological properties of the polymer. Furthermore, this vital information will aid in the design of future proton conducting membranes, especially ones that can operate at low humidity and at temperatures above 100 °C.;Chapter 5 describes layer-by-layer (LbL) films of poly[bis(methoxyethoxyethoxy)phosphazene] (MEEP) and poly (acrylic acid) (PAA) that are assembled by utilizing the hydrogen bonding between these two polymers. These films show controlled thickness growth, high ionic conductivity, and excellent hydrolytic stability. The ionic conductivity of these films is studied by changing the assembly pH of initial polymer solutions and thereby controlling the hydrogen bonding characteristics. Despite similar film composition, MEEP/PAA LbL films assembled at higher pH values have enhanced water uptake and transport properties, which play a key role in increasing ion transport within the films.;Chapter 6 describes the synthesis and characterization of two novel cyclic phosphazenes with asymmetric spiro rings. The phosphazene molecules were synthesized via reactions of hexachlorocyclotriphosphazene with chiral amino alcohol residues. The reactions showed preferential formation of the cis isomer possibly due to the delocalization of the lone pair electrons of the spirocylic nitrogen, which reduces its ability to solvate protons. Crystals of these phosphazenes were analyzed by x-ray crystallography which confirmed the formation of cis isomers and showed their ability to include guest molecules within the crystal lattices. (Abstract shortened by UMI.)
机译:本文所描述的工作分为两个部分。第一部分着眼于锂电池和燃料电池中聚合物电解质的聚磷腈的合成与表征。总体目标是要了解这些材料中的离子传导机理,以帮助将来设计离子传导聚合物。本文的第二部分描述了具有不对称螺环侧基的环磷腈的设计和合成。提出了选择性形成顺式异构体的反应机理,并研究了由这些分子形成的晶体的包裹行为。第一章概述了锂电池和燃料电池中聚合物电解质的基本概念。描述了用作电解质的聚合物的性能以及这些材料中离子导电机理的当前理解。此外,还概述了磷腈的化学和应用。第二章是对聚磷腈电解质中离子传导机理的研究。将三氟甲磺酸锂(LiTf),双(三氟甲磺酰基)亚氨酸锂(LiTFSI),三氟甲磺酸镁(MgTf2)和双(三氟甲磺酰基)亚氨酸镁(MgTFSI2)溶于聚[双(2-(2-(2-甲氧基乙氧基)乙氧基)磷腈] (MEEP)比较一价阳离子和二价阳离子以及两种离解度不同的阴离子对无溶剂聚合物离子电导率的影响;第3章介绍了一种合成方法,该方法可生产具有聚降冰片烷骨架和无机-带有磺酸单元的有机环状磷腈侧基。这种杂化聚合物将有机聚合物固有的疏水性和柔韧性与环状磷腈的调节优势相结合,可制得在室温下具有高质子传导性和低甲醇穿透率的膜。研究了离子交换容量(IEC),聚合物的水溶胀行为以及伽马辐射交联的影响,以及这些材料的质子电导率和甲醇渗透性。;第4章研究了质子吸收的水的特性。导电膜。将质子传导膜与2H2O水合,并使用2H T1 NMR弛豫来探测水的分子动力学。质子传导膜中的水状态与聚合物的化学和形态特性相关。此外,这一重要信息将有助于未来质子传导膜的设计,尤其是可以在低湿度和高于100°C的温度下运行的质子传导膜。第5章介绍了聚[bis(甲氧基乙氧基乙氧基]磷腈](MEEP)和聚(丙烯酸)(PAA)通过利用这两种聚合物之间的氢键组装而成。这些薄膜显示出受控的厚度增长,高离子电导率和出色的水解稳定性。通过改变初始聚合物溶液的组装pH值,从而控制氢键合特性,研究了这些薄膜的离子电导率。尽管膜组成相似,但在较高pH值下组装的MEEP / PAA LbL膜具有增强的吸水和传输特性,这在增加膜内离子传输方面起着关键作用。;第6章描述了两种新型环磷腈的合成和表征不对称螺环。通过六氯环三磷腈与手性氨基醇残基的反应合成磷腈分子。反应显示优先形成顺式异构体,可能是由于螺环氮的孤对电子离域,这降低了其溶解质子的能力。通过X射线晶体学分析这些磷腈的晶体,证实了顺式异构体的形成并显示出它们在晶格内包括客体分子的能力。 (摘要由UMI缩短。)

著录项

  • 作者

    Lee, David Kim Yong.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Alternative Energy.;Chemistry Inorganic.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 154 p.
  • 总页数 154
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号