首页> 外文学位 >New approaches in quantitative mechanistic modeling of radiation-induced carcinogenesis.
【24h】

New approaches in quantitative mechanistic modeling of radiation-induced carcinogenesis.

机译:辐射诱发致癌作用的定量机制建模的新方法。

获取原文
获取原文并翻译 | 示例

摘要

Humans have always been exposed to natural sources of ionizing radiation, for example to radon gas rising from the ground, cosmic rays bombarding the Earth from space, and radioactive isotopes in the soil and inside the human body itself. In recent decades the average yearly doses of ionizing radiation to the US population have grown mainly due to increases in man-made exposure sources. Chief among these new sources of radiation are diagnostic medical procedures, e.g. computed tomography (CT), nuclear medicine, and fluoroscopy. Cancer radiotherapy also contributes, especially because the number of treated patients is increasing and their life expectancy after therapy is becoming longer. The nuclear power industry and space travel represent sources of occupational irradiation, and the potential of radiological terrorism is a grim prospect for malicious population-scale exposure.;A unified approach of integrating short- and long-term methods is needed because it would combine the advantages of both model classes: a detailed dose response would be generated by the short-term component of the formalism, even for a complicated irradiation scheme such as cancer radiotherapy, and modulation of this dose response over time after exposure until cancer diagnosis would be tracked by the long-term component. Developing and implementing such a combined short-long-term model of spontaneous and radiation-induced carcinogenesis is the purpose of this dissertation.;After the introduction (Chapter I), the short-term processes were addressed by formalisms in the class called iip or iir models: such models focus on the production of pre-malignant cells by radiation (initiation), killing of normal and pre-malignant cells by radiation (inactivation), and repopulation of surviving cells (proliferation or repopulation). A deterministic iip model was applied to radiogenic leukemias (Chapter II). An overview of iip modeling prospects for solid tumors was provided next (Chapter III), followed by use of a stochastic iip formalism on radiogenic second cancer risks in survivors of Hodgkin's disease (Chapter IV).;Next, plausible assumptions about long-term processes were grafted on to the short-term framework. The long-term equations use a classic two-stage approach, tracking the numbers of pre-malignant (stage 1) cells until the appearance of the first fully malignant (stage 2) cell, which can give rise to cancer. Novel features of the long-term formalism include: (1) emphasis on stem cell niches and clones rather than individual cells and (2) stem cell aging along with aging of the whole organism. The combined short-long-term formalism was applied to cancer risk data in atomic bomb survivors and radiotherapy patients, and to background cancer incidence (Chapters V and VI). Modified versions of the model were then used to analyze mouse carcinogenesis data (Chapter VII) and radon-induced lung cancer in rats and humans (Chapter VIII). Recent data on cancer risks from atomic bomb survivors were analyzed to clarify the mechanisms behind age at exposure dependencies of these risks (Chapter IX). Finally, future model applications, e.g. for second cancer risk minimization during radiotherapy treatment planning, were discussed (Chapter X).;The task of radiation risk estimation is a difficult one, particularly for complex exposure scenarios such as cancer radiotherapy. The fractionation schemes and dose distributions are changing rapidly, making extrapolation of risks from decades-old protocols to current practices suboptimal. Risks induced by newer protocols cannot be assessed directly because of the long latency period for many cancers (e.g. 10 years). This situation can be addressed by biologically-based mathematical models of spontaneous and radiation-induced carcinogenesis. Such models estimate cancer risk by implementing plausible assumptions about the mechanisms of carcinogenesis, e.g. the population dynamics of pre-malignant cells under background conditions and in irradiated individuals. Model parameter values can be obtained from the literature and/or by fitting the formalism to data on background cancer rates and radiation-induced risks. The calibrated model can then be used to predict cancer risks associated with modern or prospective irradiation protocols.;Taken together, these results suggest that the combined short-long-term modeling approach is a promising method for predicting radiogenic cancer risks from radiotherapy as well as from other exposure sources such as radon, and for interpreting the underlying biological mechanisms. (Abstract shortened by UMI.)
机译:人体一直暴露于电离辐射的天然源中,例如暴露于从地面升起的ra气,宇宙射线从太空轰击地球,土壤和人体内部的放射性同位素。近几十年来,美国人口的电离辐射平均年剂量有所增长,这主要是由于人为暴露源的增加。在这些新的辐射源中,主要的是诊断性医疗程序,例如计算机断层扫描(CT),核医学和荧光检查。癌症放疗也有贡献,特别是因为接受治疗的患者人数正在增加,并且治疗后的预期寿命越来越长。核电工业和太空旅行代表了职业辐照的来源,放射性恐怖主义的潜力是恶意人口规模暴露的严峻前景。;需要将短期和长期方法结合起来的统一方法,因为它将结合两种模型的优点:形式主义的短期组成部分将产生详细的剂量响应,即使对于复杂的放射方案,例如癌症放疗,也可在暴露后随时间对剂量响应进行调节,直到追踪到癌症诊断为止由长期组成。本文的目的是开发和实现这种自发的和辐射诱发的致癌作用的短期-长期组合模型。引言(第一章)之后,短期过程由形式学解决,即iip或iir模型:此类模型集中于通过辐射(起始)产生恶变前细胞,通过辐射(失活)杀死正常和恶变前细胞以及存活细胞的再繁殖(增殖或再繁殖)。确定性的iip模型应用于放射源性白血病(第二章)。接下来,对实体瘤的iip建模前景进行了概述(第三章),然后对霍奇金病幸存者的放射源性第二癌症风险使用了随机iip形式主义(第四章);其次,关于长期过程的合理假设被移植到短期框架中。长期方程使用经典的两阶段方法,跟踪恶性前(阶段1)细胞的数量,直到第一个完全恶性(阶段2)细胞出现,这可能会导致癌症。长期形式主义的新特征包括:(1)强调干细胞的壁and和克隆,而不是单个细胞;(2)干细胞的衰老以及整个生物的衰老。结合的短期-长期形式主义被应用到原子弹幸存者和放射治疗患者的癌症风险数据,以及背景癌症的发病率(第五章和第六章)。然后使用模型的修改版来分析小鼠和人类的癌变数据(第七章)和ra诱发的肺癌(第八章)。分析了来自原子弹幸存者的近期癌症风险数据,以阐明这些风险与年龄的依存关系(第九章)。最后,未来的模型应用,例如讨论了如何在放射治疗计划中最小化第二次癌症风险(第X章)。辐射风险估算任务是一项艰巨的任务,尤其是对于复杂的暴露情况,例如癌症放射治疗。分馏方案和剂量分布变化迅速,使得从数十年前的方案到当前实践的风险推断不理想。由于许多癌症的潜伏期较长(例如10年),因此无法直接评估由更新方案引起的风险。这种情况可以通过基于生物学的自发和辐射诱导的致癌作用的数学模型解决。这样的模型通过实施关于癌发生机理的合理假设来估计癌症风险,例如在背景条件下和受辐照个体中恶性前细胞的种群动态。模型参数值可以从文献中获得和/或通过使形式主义适合于背景癌症发生率和辐射诱发的风险的数据。校准后的模型可用于预测与现代或前瞻性辐照方案相关的癌症风险。总而言之,这些结果表明,组合的短期-长期建模方法是一种有前途的方法,可用于预测放射疗法和放射疗法产生的癌症风险。从其他暴露来源(例如ra)中提取,并用于解释潜在的生物学机制。 (摘要由UMI缩短。)

著录项

  • 作者

    Shuryak, Igor.;

  • 作者单位

    Columbia University.;

  • 授予单位 Columbia University.;
  • 学科 Environmental Health.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 391 p.
  • 总页数 391
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号