首页> 外文学位 >Lab-on-a-chip optical immunosensor for pathogen detection.
【24h】

Lab-on-a-chip optical immunosensor for pathogen detection.

机译:芯片实验室光学免疫传感器,用于病原体检测。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation develops technology for microfluidic point-of-care (POC) immunoassay devices, divided into three papers, and explores the use of a quartz crystal microbalance for real time monitoring of blood coagulation in a fourth paper. The concept of POC testing has been well established around the world. With testing conveniently brought to the vicinity of the patient or testing site, results can be obtained in a much shorter time. There has been a global push in recent years to develop POC molecular diagnostics devices for resource-limited regions where well equipped centralized laboratories are not readily accessible. POC testing has applications in medical/veterinary diagnostics, environmental monitoring, as well as defense related testing.;Immunoassay techniques take advantage of the high specificity and sensitivity exhibited by antibody-antigen interactions, enabling for detection and/or quantification of target analytes in complex chemical matrices. Fields of application of immunoassays vary from clinical diagnostics to environmental analysis, to food safety assessment, and the target analytes cover the widest range of molecular weight, from small organic molecules to biomolecules of hundreds of kilodaltons.;In the first paper, we demonstrated the use of latex immunoagglutination assays within a microfluidic chip to be an effective and sensitive method for detecting the bovine viral diarrhea virus. This assay has been shown to be more sensitive than conventional BVDV detection protocols such as RT-PCR, detecting the viral particles down to a concentration of 10 TCID50 mL-1; while RT-PCR performed by this lab on the same viral sample showed a detection limit of 103 TCID50 mL -1. Literature sources site detecting the virus down to 10 1.5 TCID50 mL-1 (not in a microfluidic chip format) under carefully optimized protocols, instruments, and conditions. The total assay time for virus detection on this platform is less than 5 min, and the chip has the potential to become portable, demonstrating the possibility for development of a truly rapid point of care detection device. While BVDV was used as the model pathogenic target in this experiment, it should be noted that the target of the assay can easily be changed by adsorbing the appropriate antibodies to the microparticles, such that this platform could theoretically be used to detect many different pathogens in parallel.;In the second paper the feasibility and general ease of integrating liquid core optical components onto a microfluidic lab-on-a-chip type device, for point-of-care AI diagnosis is demonstrated. Integration of liquid core optical waveguides provides a method for further miniaturization of the device towards a truly POC sensor. The extremely low device detection limit of 1 pg /mL for AI antigens in both clean buffer and real biological matrix, coupled with the potential portability, make this device a good candidate for a point-of-care diagnostic tool for early AI detection.;In the third paper particle agglutination assays, utilizing light scattering measurements at a fixed angle from incident light delivery, for pathogen detection are explored in both Rayleigh and Mie scatter regimes through scatter intensity simulations and compared to experimental results. This work demonstrates the feasibility of utilizing light scatter measurements of particle immunoassays in both Rayleigh and Mie regimes as complementary information towards a robust platform for pathogen detection that is both highly sensitive and quantitative. These two similar yet distinctly different sources of information could easily be integrated into a single device through fabrication of a simple microfluidic device containing two y-channels, each for performing the respective light scattering measurement.;In the fourth paper a quartz crystal microbalance was used for real-time monitoring of fibrinogen cross-linking on three model biomaterial surfaces. We found that fibrinogen adsorbs slowly and forms a less rigid multi-layer on hydrophobic surfaces, while it adsorbs quickly, forming a single mono-layer on hydrophilic surfaces. The extent of fibrinogen cross-linking is greater on hydrophobic surfaces. Fibrinogen cross-linking can also rigidify the relatively soft coatings of poly(methyl methacrylate) and dodecanethiol self-assembled monolayer. This type of analysis could prove useful for testing the blood compatibility of biomaterial candidates.
机译:本论文开发了微流即时检验(POC)免疫测定设备的技术,分为三篇论文,第四篇论文探讨了使用石英晶体微量天平实时监测血液凝固情况。 POC测试的概念已在全球范围内确立。通过将测试方便地带到患者或测试部位附近,可以在更短的时间内获得结果。近年来,在全球范围内推动了POC分子诊断设备的开发,以用于资源匮乏的地区,在这些地区设备不佳的集中实验室不易获得。 POC检测可用于医学/兽医诊断,环境监测以及与国防相关的检测中;免疫分析技术利用抗体-抗原相互作用所表现出的高特异性和敏感性,可检测和/或定量复杂目标分析物化学基质。免疫测定的应用范围从临床诊断到环境分析,再到食品安全评估,目标分析物涵盖的分子量范围最广,从有机小分子到数百千道尔顿的生物分子。在第一篇论文中,我们证明了在微流控芯片中使用乳胶免疫凝集测定法是检测牛病毒性腹泻病毒的有效且灵敏的方法。与常规的BVDV检测方案(如RT-PCR)相比,该检测方法灵敏度更高,可检测低至10 TCID50 mL-1浓度的病毒颗粒。该实验室对同一病毒样品进行的RT-PCR检测限为103 TCID50 mL -1。文献资料来源在精心优化的方案,仪器和条件下,可检测到低至10 1.5 TCID50 mL-1(非微流芯片格式)的病毒。在此平台上,用于病毒检测的总分析时间少于5分钟,并且该芯片具有可移植性的潜力,证明了开发真正快速的即时护理检测设备的可能性。尽管在本实验中将BVDV用作模型病原体靶标,但应注意的是,通过将适当的抗体吸附到微粒上,可以很容易地改变测定的靶标,因此该平台理论上可以用于检测多种不同的病原体。在第二篇论文中,论证了将液芯光学组件集成到微流芯片实验室型设备上以进行即时医疗AI诊断的可行性和总体简便性。液芯光波导的集成提供了一种将设备进一步缩小为真正的POC传感器的方法。清洁缓冲液和真实生物基质中AI抗原的极低设备检测限1 pg / mL,加上潜在的便携性,使该设备成为早期AI检测的即时诊断工具的理想选择。在第三篇论文中,通过散射强度模拟,在瑞利散射和米氏散射两种情况下,探索了从入射光发射到固定角度的光散射测量,用于病原体检测,并将其与实验结果进行了比较。这项工作证明了在瑞利和米氏体系中利用颗粒免疫测定的光散射测量作为补充信息的可行性,以建立一个既灵敏又定量的强大病原体检测平台。通过制造包含两个y通道的简单微流体设备,可以轻松地将这两个相似但截然不同的信息源集成到单个设备中;在第四篇论文中,使用了石英晶体微量天平。用于实时监测三个模型生物材料表面上的纤维蛋白原交联。我们发现,纤维蛋白原吸收缓慢,并在疏水表面上形成硬度较低的多层,而纤维蛋白原则迅速吸收,在亲水表面上形成单个单层。纤维蛋白原交联的程度在疏水性表面上更大。纤维蛋白原交联还可以使聚甲基丙烯酸甲酯和十二烷硫醇自组装单层的相对较软的涂层硬化。这种类型的分析可能对测试候选生物材料的血液相容性很有用。

著录项

  • 作者

    Heinze, Brian C.;

  • 作者单位

    The University of Arizona.;

  • 授予单位 The University of Arizona.;
  • 学科 Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 133 p.
  • 总页数 133
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号