首页> 外文学位 >Platinum alloy nanoparticles: Composition, shape, structure and electrocatalytic property.
【24h】

Platinum alloy nanoparticles: Composition, shape, structure and electrocatalytic property.

机译:铂合金纳米颗粒:组成,形状,结构和电催化性能。

获取原文
获取原文并翻译 | 示例

摘要

With the increasing environmental concern and accelerated depletion of fossil fuel, there are renewed research interests in the development of new technology using alternative energy sources, most noticeably those fuels that can be utilized by proton exchange membrane fuel cells (PEMFCs). Platinum has been widely used as electrocatalyst in PEMFCs because of its outstanding catalytic property over others metals. While platinum is often essential to ensure outstanding catalytic properties, cost, activity and durability are still some of the key issues that have hindered its real world applications. Exploration of highly efficient and durable electrocatalysts with low Pt content is pivotal in advancing the fuel cell technology. Studies have demonstrated that both d-band electrons and surface geometric structure can greatly affect the activity of catalysts and can be optimized by tailoring their composition and shape and overall structure. The cost issue can be addressed in part by improving the specific activity and durability of the catalysts and by reducing the amount of platinum used.;In this thesis I present my studies on the synthesis, characterization and electrochemical study of platinum alloy nanoparticles. A series of Pt-on-Metal (M=Ag, Au, Cu, Pd) heterogeneous nanostructures have been prepared and their electrocatalytic properties have been tested. The Pt-on-Pd catalyst exhibited both enhanced activity and much improved stability in oxygen reduction reaction (ORR). We have been able to make other platinum alloy nanostructures from these Pt-on-M nanoparticles. Pt-Au bimetallic nanoparticles produced by thermal treatment were much more active than Pt in catalyzing formic acid oxidation reaction (FAOR). Platinum hollow nanospheres and cubic nanoboxes were obtained by an electrochemical approach and exhibited significant improvement in ORR and methanol oxidation reaction (MOR) activities. Study on novel platinum nanoalloys with composition in their bulk miscibility gap and their electrocatalytic property has resulted in the synthesis of PtAg alloy nanoparticles with a wide range of composition. An electrochemical method has been developed for the preparation of heterogeneous PtAg alloy catalysts with low-Pt content cores and Pt-rich surfaces. The optimal PtAg catalyst not only can have much improved activity but also show limited degradation in FAOR. A generic chemical dealloying method has also been developed for making tiny metal nanoparticles with their size down to 1 nm. Their catalytic activity has been demonstrated using p-nitrophenol reduction as the model reaction.
机译:随着对环境问题的日益关注和对化石燃料的加速消耗,对使用替代能源的新技术的开发产生了新的研究兴趣,其中最明显的是质子交换膜燃料电池(PEMFC)可以利用的那些燃料。铂由于其对其他金属的出色催化性能而被广泛用作PEMFC中的电催化剂。尽管铂通常对于确保出色的催化性能必不可少,但成本,活性和耐用性仍然是阻碍其在现实世界中应用的一些关键问题。探索具有低Pt含量的高效耐用的电催化剂对于推进燃料电池技术至关重要。研究表明,d带电子和表面几何结构都可以极大地影响催化剂的活性,并且可以通过调整其组成,形状和整体结构进行优化。可以通过提高催化剂的比活度和耐久性以及减少铂的用量来部分解决成本问题。本论文主要介绍铂合金纳米粒子的合成,表征和电化学研究。制备了一系列的金属对铂(M = Ag,Au,Cu,Pd)异质纳米结构,并测试了其电催化性能。 Pt-on-Pd催化剂在氧还原反应(ORR)中显示出增强的活性和大大提高的稳定性。我们已经能够从这些Pt-on-M纳米颗粒制造其他铂合金纳米结构。通过热处理生产的Pt-Au双金属纳米颗粒在催化甲酸氧化反应(FAOR)方面比Pt活性高得多。铂空心纳米球和立方纳米盒通过电化学方法获得,并显示出ORR和甲醇氧化反应(MOR)活性的显着改善。对新型铂纳米合金的研究表明,该铂纳米合金的体积可混溶间隙和电催化性能各不相同,从而合成了具有广泛组成的PtAg合金纳米颗粒。已经开发出一种电化学方法来制备具有低Pt含量核和富Pt表面的非均相PtAg合金催化剂。最佳的PtAg催化剂不仅可以大大提高活性,而且在FAOR中显示出有限的降解。还开发了一种通用的化学脱合金方法,用于制造尺寸小至1 nm的微小金属纳米颗粒。使用对硝基苯酚还原作为模型反应已证明了它们的催化活性。

著录项

  • 作者

    Peng, Zhenmeng.;

  • 作者单位

    University of Rochester.;

  • 授予单位 University of Rochester.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 232 p.
  • 总页数 232
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号