首页> 外文学位 >Dynamic routing and rate control in stochastic network optimization: From theory to practice.
【24h】

Dynamic routing and rate control in stochastic network optimization: From theory to practice.

机译:随机网络优化中的动态路由和速率控制:从理论到实践。

获取原文
获取原文并翻译 | 示例

摘要

Real-world applications of wireless sensor networks are frequently faced with network capacity constraints, restricting the sensing frequency or scalability of the deployment. In the absence of transport-layer rate control the allocation of network capacity can be highly asymmetric, favoring sensing nodes near the collection agent. Further, external interference and new participatory sensing paradigms can result in highly dynamic collection topologies. Lastly, protocols for the resource-constrained networks must emphasize low complexity while minimizing control overhead. Addressing these challenges, we present a novel backpressure-based routing and rate-control stack that is motivated by stochastic network optimization theory.;Current data collection protocols for wireless sensor networks are mostly based on quasi-static minimum-cost routing trees. We first consider an alternative, highly-agile approach called backpressure routing, in which routing and forwarding decisions are made on a per-packet basis. Although there is considerable theoretical literature on backpressure routing, it has not been previously implemented on practical systems due to concerns of packet looping, the effect of link losses, large packet delays, and scalability. We present the Backpressure Collection Protocol (BCP) for sensor networks, the first-ever implementation of dynamic backpressure routing in wireless networks. In particular, we demonstrate for the first time that replacing the traditional FIFO queue service in backpressure routing with LIFO queues reduces the average end-to-end packet delays for delivered packets drastically (75% under high load, 98% under low load). Further, we improve backpressure scalability by introducing a new concept of floating queues into the backpressure framework. Under static network settings, BCP shows a more than 60% improvement in max-min rate over the state of the art Collection Tree Protocol (CTP). We also empirically demonstrate the superior delivery performance of BCP in dynamic network settings, including conditions of extreme external interference and highly mobile sinks.;Backpressure-based stochastic network optimization theory employs a tunable optimization parameter, V. As V is increased, utility or penalty performance approaches the optimal like O( 1V ) while delay grows linearly in V. We provide analysis motivating the novel usage of the LIFO queueing discipline in backpressure stacks, suggesting that delay scales near-optimally like O( log2(V)) for all but a small fraction of traffic. We then empirically evaluate delay and discard performance of BCP as the V parameter is raised, and find the results in strong agreement with theory.;Finally, we turn our attention to state of the art rate control protocols for wireless sensor networks, which are traditionally assumed to run atop the aforementioned quasi-static routing trees. We implement and empirically explore a backpressure rate controller, theoretically capable of maximizing an aggregate source utility function while the underlying backpressure routing framework dynamically routes packets, often amongst multiple paths, to the collection agent. We demonstrate an alpha-fair rate controller which achieves 95% of the empirically determined max-min fair rate allocation over a 20-mote deployment, and 80% of the max-min fair rate allocation over 40 motes.
机译:无线传感器网络的实际应用经常面临网络容量的限制,从而限制了部署的传感频率或可扩展性。在没有传输层速率控制的情况下,网络容量的分配可能高度不对称,从而有利于收集代理附近的传感节点。此外,外部干扰和新的参与感测范式可能会导致高度动态的集合拓扑。最后,用于资源受限网络的协议必须强调低复杂度,同时最大程度地减少控制开销。为应对这些挑战,我们提出了一种基于随机网络优化理论的新颖的基于背压的路由和速率控制堆栈。当前无线传感器网络的数据收集协议主要基于准静态最小成本路由树。我们首先考虑另一种称为背压路由的高度灵活的方法,该方法中的路由和转发决策是基于每个数据包的。尽管有大量有关反压路由的理论文献,但由于担心数据包循环,链路丢失的影响,大数据包延迟和可伸缩性,因此尚未在实际系统上实现。我们提出了用于传感器网络的背压收集协议(BCP),这是无线网络中动态背压路由的首次实现。特别是,我们首次展示了用LIFO队列替换背压路由中的传统FIFO队列服务,可显着减少已交付数据包的平均端到端数据包延迟(高负载下为75%,低负载下为98%)。此外,我们通过将浮动队列的新概念引入反压框架来提高反压可伸缩性。在静态网络设置下,与最先进的收集树协议(CTP)相比,BCP的最大-最小速率提高了60%以上。我们还通过经验证明了BCP在动态网络设置中的卓越交付性能,包括极端外部干扰和高度移动接收器的情况。;基于背压的随机网络优化理论采用了可调优化参数V.随着V的增加,效用或罚款性能接近O(1V)之类的最佳值,而延迟在V中线性增长。我们提供的分析激发了LIFO排队规则在反压堆栈中的新颖用法,这表明所有延迟都像O(log2(V))一样接近最优。一小部分流量。然后,随着V参数的提高,我们将根据经验评估BCP的延迟和丢弃性能,并找到与理论相符的结果。假设运行在上述准静态路由树之上。我们实现并凭经验探索一种背压速率控制器,该控制器理论上能够最大化聚合源实用程序功能,而底层的背压路由框架则将数据包(通常在多个路径中)动态路由到收集代理。我们演示了一个alpha-fair rate控制器,该控制器在20步部署中达到了经验确定的最大-最小公平分配的95%,在40步中达到了最大-最小公平分配的80%。

著录项

  • 作者

    Moeller, Scott.;

  • 作者单位

    University of Southern California.;

  • 授予单位 University of Southern California.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 188 p.
  • 总页数 188
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号