首页> 外文学位 >Soil nitrogen transformations under elevated carbon dioxide and ozone concentrations during the growing season of soybean.
【24h】

Soil nitrogen transformations under elevated carbon dioxide and ozone concentrations during the growing season of soybean.

机译:大豆生长季节二氧化碳和臭氧浓度升高时土壤氮的转化。

获取原文
获取原文并翻译 | 示例

摘要

The increasing atmospheric concentrations of CO2 and O 3 are likely to alter ecosystem functioning by modifying rates of plant photosynthesis and production of plant biomass. Soil microorganisms that are driven by the amount and quality of plant organic material conduct crucial ecosystem processes, such as N cycling. This study aims to investigate how soil N cycling will respond to elevated CO2 and O3. More specifically, it focuses on the changes in nitrifiers and denitrifiers communities, as well as N transformation processes, under elevated CO 2 and O3 conditions within the growing season and across soil environments (i.e., rhizosphere and bulk soil). We determined changes in soil available N and in gene abundance of total bacteria (16S rRNA), nitrifiers (amoA) and denitrifiers (nosZ), caused by elevated CO2 and O3 in the rhizosphere and bulk soil of a soybean (Glycine max (L.) Merr.) agroecosystem. Soil samples were collected at different phenological stages of the soybean plants: fourth trifoliolate leaf (V4), full pod (R4), and full maturity (R8) during the 2008 growing season at the SoyFACE experiment in Champaign-Urbana, Illinois. The abundance of 16S rRNA genes ranged from 1.54 x 108 to 3.77 x 108 copies g-1 soil. Elevated CO2 increased 16S rRNA gene abundance during R8 compared to V4 and R4. The amoA gene abundance ranged from 6.5 x 106 to 1.5 x 107 copies g-1 soil, but neither elevated CO 2 nor O3 had significant effects on amoA abundance. The nosZ gene abundance ranged from 2.87 x10 5 to 4.18 x 106 copies g-1 soil and was significantly more abundant in the rhizosphere compared to the bulk soil. Although not statistically significant, elevated O3 tended to increase the abundance of nosZ, whereas elevated CO2 did not change nosZ abundance. In contrast to our expectations, the effects of elevated CO2 and O3 on the measured variables were not more pronounced in the rhizosphere compared to the bulk soil. Although total soil N was significantly higher under elevated than ambient O3 conditions, elevated O3 decreased soil mineral N through a reduction in plant material input and increased denitrification, which was indicated by the higher abundance of nosZ. Elevated CO 2 did not alter any of the parameters evaluated and elevated CO 2 and O3 showed no interactive effects on nitrifier and denitrifier communities nor on the concentration of total and mineral N in soil. Sampling event, which corresponded to the different plant phenological stages did not show any interaction effects with CO2 and O 3 on N dynamics.;This study shows that elevated CO2 may have limited effects on terrestrial N transformations in soybean agroecosystems, but elevated O 3 can lead to a decrease in plant N availability in both the rhizosphere and bulk soil. In conclusion, in addition to reducing photosynthetic rates, elevated O3 can also affect ecosystem productivity by reducing the mineralization rates of plant-derived residues.
机译:大气中不断增加的CO2和O 3浓度可能会通过改变植物光合作用的速率和植物生物量的产生而改变生态系统的功能。由植物有机物质的数量和质量驱动的土壤微生物会进行至关重要的生态系统过程,例如氮循环。这项研究旨在调查土壤氮循环将如何响应升高的CO2和O3。更具体地说,它关注在生长季节内以及整个土壤环境(即根际和块状土壤)中,在CO 2和O3升高的条件下,硝化器和反硝化器群落的变化以及氮的转化过程。我们确定了大豆根际和大块土壤中的CO2和O3升高引起的土壤有效氮和总细菌(16S rRNA),硝化剂(amoA)和反硝化剂(nosZ)的基因丰度的变化(最大大豆(L. )Merr。)农业生态系统。在伊利诺伊州Champaign-Urbana的SoyFACE实验中,在2008年生长季节,从大豆植物的不同物候阶段收集了土壤样品:第四叶小叶(V4),全荚(R4)和完全成熟(R8)。 16S rRNA基因的丰度范围从1.54 x 108到3.77 x 108拷贝g-1土壤。与V4和R4相比,R8期间CO2升高会增加16S rRNA基因的丰度。 amoA基因的丰度范围为6.5 x 106到1.5 x 107拷贝g-1土壤,但是升高的CO 2和O3都不会对amoA丰度产生显着影响。 nosZ基因的丰度范围为2.87 x10 5至4.18 x 106副本g-1土壤,与整个土壤相比,其在根际中的丰度明显更高。尽管在统计学上不显着,但升高的O3倾向于增加nosZ的丰度,而升高的CO2并没有改变nosZ的丰度。与我们的预期相反,与块状土壤相比,在根际中,CO 2和O 3升高对测量变量的影响并不明显。尽管在升高的O3条件下土壤总氮明显高于环境O3,但升高的O3通过减少植物原料的投入和增加反硝化作用而减少了土壤矿质N,这可由nosZ的丰度更高来表明。升高的CO 2不会改变任何评估的参数,升高的CO 2和O3对硝化剂和反硝化剂群落以及土壤中总氮和矿质氮的浓度均无交互作用。对应于不同植物物候阶段的采样事件并未显示出CO2和O 3对氮动态的任何相互作用影响。这项研究表明,升高的CO2对大豆农业生态系统中陆地氮转化的影响有限,但升高的O 3可以导致根际和块状土壤中植物氮素的利用率下降。总之,除了降低光合速率外,升高的O3还可以通过降低植物残渣的矿化速率来影响生态系统的生产力。

著录项

  • 作者单位

    University of California, Davis.;

  • 授予单位 University of California, Davis.;
  • 学科 Agriculture Agronomy.;Agriculture Soil Science.;Environmental Geology.;Climate Change.
  • 学位 M.S.
  • 年度 2010
  • 页码 50 p.
  • 总页数 50
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号