首页> 外文学位 >Development of a numerical simulation tool for modeling a DC arc discharge in a liquid dielectric media.
【24h】

Development of a numerical simulation tool for modeling a DC arc discharge in a liquid dielectric media.

机译:数值模拟工具的开发,用于对液体介电介质中的直流电弧放电进行建模。

获取原文
获取原文并翻译 | 示例

摘要

The majority of literature regarding the numerical simulation of arc discharges in gaseous environments has used a plasma physics approach. Virtually all simulations treat the discharge as an idealized gaseous plasma, which can be described by temperature, pressure, and electric field. This approach can work well if the media is a shielding gas such as Argon; however, the approach does not work well for processes such as underwater welding, EDM, and underwater discharges used to generate high purity particles. The reason these discharges do not have many extensive simulation efforts as described in the literature is because they occur in liquid dielectric media (Oil and water) which complicates the simulation efforts. Most research efforts in these areas describe experimental methods to evaluate discharge properties.;In this research a new method to investigate discharges in a dielectric media using an electrostatic and particle physics approach is proposed and validated. A commercial code that has been developed to simulate charged particle beams, dielectric materials, and perform multi-physics analyses, is the Vector Fields suite of solvers from Cobham Technical Services. This research demonstrates a simulation methodology that can be used to simulate a DC electric arc discharge in a lossy dielectric media using the Vector Fields environment. This simulation is the first of its kind to simulate this type of a discharge with a commercial FEA code. As such there are some limitations to the simulation. However, the simulation can be used to investigate the following: (1) Any metal, electrode geometry, discharge gap, or dielectric media can be studied; (2) Primary Beam Physics; (a) Electron velocity/acceleration (direct calculation of electron temperature); (b) Energy deposition on the anode from all emission sources; (c) Effect of dielectric media on beam physics (trajectories, velocity, constriction, beam induced magnetic fields, space chare, and secondary emission); (d) Beam current; (e) Particle trajectories (including relativistic effects); (3) Secondary Particle Generation and physics; (a) Atomic species (neutral particles or ions) and secondary electron emission; (b) Particle trajectories; (c) Back ion bombardment on the cathode.
机译:关于在气态环境中电弧放电的数值模拟的大多数文献已经使用了等离子体物理方法。几乎所有模拟都将放电视为理想的气态等离子体,可以用温度,压力和电场来描述。如果介质是氩气之类的保护气体,则此方法可以很好地工作。但是,该方法不适用于水下焊接,EDM和用于生成高纯度颗粒的水下放电等工艺。如文献所述,这些放电没有进行大量的模拟工作的原因是因为它们发生在液体介电介质(油和水)中,这使模拟工作变得复杂。这些领域中的大多数研究工作都描述了评估放电特性的实验方法。在本研究中,提出并验证了一种使用静电和粒子物理方法研究介电介质中放电的新方法。由Cobham技术服务提供的Vector Fields求解器套件已开发出一种商业代码,用于模拟带电粒子束,介电材料并执行多物理场分析。这项研究演示了一种模拟方法,该方法可用于使用Vector Fields环境模拟有损介电介质中的DC电弧放电。这种模拟是首次使用商业FEA代码模拟这种放电。因此,模拟存在一些限制。然而,该仿真可用于研究以下方面:(1)可以研究任何金属,电极几何形状,放电间隙或介电介质; (2)初级束物理学; (a)电子速度/加速度(电子温度的直接计算); (b)所有排放源在阳极上沉积的能量; (c)介电介质对射束物理学的影响(轨迹,速度,收缩,射束感应磁场,空间碳和二次发射); (d)束流; (e)粒子轨迹(包括相对论效应); (3)二次粒子的产生与物理学; (a)原子物质(中性粒子或离子)和二次电子发射; (b)粒子轨迹; (c)阴极上的反离子轰击。

著录项

  • 作者

    Lewis, Christopher J.;

  • 作者单位

    Brigham Young University.;

  • 授予单位 Brigham Young University.;
  • 学科 Physics Electricity and Magnetism.;Physics Elementary Particles and High Energy.;Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号