首页> 外文学位 >Entropy and Energy in Quantum Networks
【24h】

Entropy and Energy in Quantum Networks

机译:量子网络中的熵和能量

获取原文
获取原文并翻译 | 示例

摘要

Quantum channels are functions that map density matrices to density matrices. They can be used to describe a vast array of system environment interactions for quantum mechanical systems. The focus in quantum information theory lies on the study of the information content -- the quantum entropy -- of input and output system. The property of how much information a channel can convey is called capacity. When two quantum channels are combined they act on a bigger, possibly entangled state in parallel. The effects of entanglement on the capacity of a pair of channels have been widely studied. Still, recent work showed unexpected behavior. Hastings [33] found that the capacities of two channels to transmit classical information does not simply add, but can exceed the sum of the individual quantum capacities, a property called superadditivity. We study Hastings' work and find estimates for how large the dimensions of such channels would have to be. The question of capacity relates to the behavior of quantum channels in extremal cases, when the output entropy is minimized. It is natural to wonder about the "standard" behavior of quantum channels and consider their average output entropy. We have studied this behavior in particular in cases where many relatively simple quantum channels act in parallel. When combining quantum channels in parallel, the parts of the system evolve independently of each other -- up to entanglement -- and only interact with the environment. Expanding on this idea one can think of a system where the parts not only interact with the environment but also directly with each other, a quantum channel network. Interesting cases of such systems arise naturally in the study of large biological molecules. In this case, information is often transmitted via energy pulses. Thus, the study of entropy and the study of energy overlap. Of particular interest to us are antennas in photo-active systems, they absorb light energy and transports it to a chemical reaction site. Recently, it has been discovered in the FMO molecule [24] that this process evolves coherently, i.e. shows quantum oscillatory behavior. We study such quantum channel networks and how they can be approximated by kinetic networks. When considering the transport efficiency, this helps separating possible coherent effects from incoherent hopping.
机译:量子通道是将密度矩阵映射到密度矩阵的功能。它们可用于描述量子力学系统的大量系统环境相互作用。量子信息理论的重点在于研究输入和输出系统的信息内容-量子熵。信道可以传达多少信息的特性称为容量。当两个量子通道组合在一起时,它们并行作用于更大的,可能纠缠的状态。纠缠对一对通道容量的影响已被广泛研究。尽管如此,最近的工作仍显示出意想不到的行为。 Hastings [33]发现,两个通道传输经典信息的能力不仅会增加,而且会超过单个量子能力的总和,这种特性称为超加和性。我们研究了黑斯廷斯的工作,并估计了此类渠道的规模。当输出熵最小时,容量问题与极端情况下量子通道的行为有关。很自然地想知道量子通道的“标准”行为,并考虑它们的平均输出熵。我们已经研究了这种行为,特别是在许多相对简单的量子通道并行运行的情况下。当并行组合量子通道时,系统的各个部分彼此独立地发展-直至纠缠-并且仅与环境相互作用。扩展这个想法,可以想到一个系统,其中各部分不仅与环境相互作用,而且还彼此直接相互作用,即一个量子通道网络。在大型生物分子的研究中,自然会出现这类系统的有趣案例。在这种情况下,信息通常通过能量脉冲传输。因此,熵的研究和能量的研究是重叠的。我们特别感兴趣的是光敏系统中的天线,它们吸收光能并将其传输到化学反应位置。最近,在FMO分子中发现[24]该过程连贯地发展,即显示出量子振荡行为。我们研究了这样的量子通道网络以及如何通过动力学网络对其进行近似。考虑传输效率时,这有助于将可能的相干效果与不相干的跳跃区分开。

著录项

  • 作者

    Moser, David K.;

  • 作者单位

    Northeastern University.;

  • 授予单位 Northeastern University.;
  • 学科 Quantum physics.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 144 p.
  • 总页数 144
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号