首页> 外文学位 >Analysis of Pipeline Systems under Harmonic Forces.
【24h】

Analysis of Pipeline Systems under Harmonic Forces.

机译:谐波力作用下的管道系统分析。

获取原文
获取原文并翻译 | 示例

摘要

Starting with tensor calculus and the variational form of the Hamiltonian functional, a generalized theory is formulated for doubly curved thin shells. The formulation avoids geometric approximations commonly adopted in other formulations. The theory is then specialized for cylindrical and toroidal shells as special cases, both of interest in the modeling of straight and elbow segments of pipeline systems.;Since the treatment avoids geometric approximations, the cylindrical shell theory is believed to be more accurate than others reported in the literature. By adopting a set of consistent geometric approximations, the present theory is shown to revert to the well known Flugge shell theory. Another set of consistent geometric approximations is shown to lead to the Donnell-Mushtari-Vlasov (DMV) theory.;A general closed form solution of the theory is developed for cylinders under general harmonic loads. The solution is then used to formulate a family of exact shape functions which are subsequently used to formulate a super-convergent finite element. The formulation efficiently and accurately captures ovalization, warping, radial expansion, and other shell behavioural modes under general static or harmonic forces either in-phase or out-of-phase. Comparisons with shell solutions available in Abaqus demonstrate the validity of the formulation and the accuracy of its predictions.;The generalized thin shell theory is then specialized for toroidal shells. Consistent sets of approximations lead to three simplified theories for toroidal shells. The first set of approximations has lead to a theory comparable to that of Sanders while the second set of approximation has lead to a theory nearly identical to the DMV theory for toroidal shells. A closed form solution is then obtained for the governing equation. Exact shape functions are then developed and subsequently used to formulate a finite element. Comparisons with Abaqus solutions show the validity of the formulation for short elbow segments under a variety of loading conditions. Because of their efficiency, the finite elements developed are particularly suited for the analysis of long pipeline systems.
机译:从张量演算和哈密顿函数的变分形式开始,对双曲薄壳制定了广义理论。该公式避免了其他公式中通常采用的几何近似。然后,该理论专门用于特殊情况下的圆柱壳和环形壳,这在管道系统的直线段和弯头段的建模中都受到关注。由于处理避免了几何近似,因此圆柱壳理论被认为比其他报道的方法更准确。在文学中。通过采用一组一致的几何近似,可以证明本理论可以转换为众所周知的Flugge壳理论。显示了另一组一致的几何逼近,导致得出Donnell-Mushtari-Vlasov(DMV)理论。该理论针对一般谐波载荷下的圆柱体,开发了该理论的一般闭合形式解。然后,该解决方案用于制定一系列精确的形状函数,随后将其用于制定超收敛有限元。在同相或异相的一般静力或谐波力下,该配方可有效,准确地捕获椭圆化,翘曲,径向膨胀和其他壳体行为模式。与Abaqus中可用的壳解决方案的比较证明了该配方的有效性及其预测的准确性。然后,广义薄壳理论专门用于环形壳。一致的逼近集导致三个简化的环壳理论。第一组近似得出的理论与桑德斯的理论相当,而第二组近似得出的理论几乎与环形壳的DMV理论相同。然后为控制方程式获得封闭形式的解。然后开发精确的形状函数,然后将其用于公式化有限元。与Abaqus解决方案的比较表明,该配方在各种载荷条件下对短肘段的有效性。由于它们的效率,开发的有限元特别适合于长管道系统的分析。

著录项

  • 作者

    Salahifar, Raydin.;

  • 作者单位

    University of Ottawa (Canada).;

  • 授予单位 University of Ottawa (Canada).;
  • 学科 Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 428 p.
  • 总页数 428
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号