首页> 外文学位 >QV: The quad winged, energy efficient, six degree of freedom capable micro aerial vehicle.
【24h】

QV: The quad winged, energy efficient, six degree of freedom capable micro aerial vehicle.

机译:QV:具有四翼,高能效,六自由度的微型飞行器。

获取原文
获取原文并翻译 | 示例

摘要

Micro Aerial Vehicles (MAVs) are a class of Unmanned Aerial Vehicles (UAVs) designed for closed-quarter and small/tight space navigational operations. The conventional Micro Aerial Vehicle (MAV) as outlined by the Defense Advanced Research Projects Agency (DARPA), is a vehicle that can have a maximum dimension of 6 inches and weighs no more than 100 grams. Under these tight constraints, the footprint, weight and power reserves available for on-board avionics and actuators is drastically reduced; the flight time and payload capabilities of MAVs take a massive toll in keeping up with these stringent size constraints. However, the demand for micro flying robots is increasing rapidly.;The applications that have emerged over the years for MAVs include search & rescue operations, remote Intelligence, Surveillance and Reconnaissance (ISR), among many others. However, the biggest setback in urban operations and closed quarter navigation is enabling hover-capability / Vertical-Take-Off-and-Landing (VTOL) along with long flight times, high sensor/telemetry payload capacity and small size. VTOL capable rotary and fixed wing flying vehicles do not scale down to micro sized levels, owing to the severe loss in aerodynamic efficiency associated with low Reynolds number physics on conventional airfoils. Some of the biologically inspired designs developed so far include the MicroBat, by Caltech, Mentor, by University of Toronto and Delfly by the Technical University of Delft and Wageningen University and lately the Hummingbird by Aerovironment. However, the present state of the art lacks in one or more of the minimum qualities required from an MAV: Appreciable flight time, payload capacity and Six Degrees of Freedom (6DoF) hovering/VTOL performance. This PhD. work is directed towards overcoming these limitations.;Firstly, this PhD thesis presents the advent of a novel Quad-Wing MAV configuration (termed, QV) capable of performing all 6DoF flight maneuvers. The thesis presents the theory, conceptualization, design, simulation study and finally hardware design/development of the MAV.;Secondly, it proves and demonstrates a significant improvement in on-board energy-harvesting, capable of resulting in increased flight times and payload capacities of the order of even 200%-400% and more.;Thirdly, the thesis defines a new actuation principle, called Fixed Frequency, Variable Amplitude (FiFVA). It is demonstrated that by the use of passive elastic members on wing joints, a further noteworthy increase in energy efficiency, and consequently reduction in input power requirements is observed. An actuation efficiency increase of over 100% in many cases is predicted. The natural evolution of the actuation development led to invention of two novel actuation mechanisms that are intended to illustrate the FiFVA actuation principle, and consequently show energy savings and flapping efficiency improvement.;Finally, the thesis presents supplementary work in the design, development of two novel Micro Architecture and Control (MARC) avionics platforms (autopilots) to demonstrate flight control and communication capability on-board the four-wing flapping prototype. The design of a novel passive feathering mechanism aimed to improve lift/thrust performance of flapping motion is also presented.;The contributions emerging from the research are:;1. A novel Quad-Wing MAV configuration (termed, QV) for generating a very notable increase in flight time and payload capacity.;2. A novel 6DoF flight control law for the Quad-Wing MAV design.;3. A novel resonance flapping principle termed FiFVA, for significantly improving flapping efficiency using passive elastic elements on wing joints (springs).;4. Two novel FiFVA operated mechanical actuation prototypes and a fully functional Quad-Wing MAV prototype with two indigenously developed Micro Architecture and Control (MARC) avionics platforms.
机译:微型飞行器(MAV)是一类无人驾驶飞行器(UAV),设计用于封闭空间和小型/密闭空间导航操作。国防高级研究计划局(DARPA)概述的常规微型飞行器(MAV)是最大尺寸为6英寸且重量不超过100克的飞行器。在这些严格的限制下,可大幅减少用于航空电子设备和执行器的占地面积,重量和动力储备;为了满足这些严格的尺寸限制,MAV的飞行时间和有效载荷能力造成了巨大损失。然而,对微型飞行机器人的需求正在迅速增长。多年来,用于MAV的应用程序包括搜索和救援行动,远程情报,监视和侦察(ISR)等。但是,城市运营和封闭区导航的最大挫折是悬停功能/垂直起降(VTOL),飞行时间长,传感器/遥测有效载荷容量高和体积小。具备VTOL功能的旋翼和固定翼飞行器无法按比例缩小到微型尺寸,这是由于传统机翼的雷诺数物理特性低而导致的空气动力学效率的严重损失。迄今为止开发的一些受生物启发的设计包括由Caltech,Mentor,由多伦多大学制造的MicroBat和由代尔夫特技术大学和Wageningen大学制造的Delfly,以及最近由Aerovironment制造的蜂鸟。但是,当前技术水平缺少MAV所需的一个或多个最低质量:可观的飞行时间,有效载荷容量和六自由度(6DoF)悬停/ VTOL性能。这个博士。首先,本博士论文提出了能够执行所有6DoF飞行机动的新型Quad-Wing MAV配置(称为QV)的问世。论文介绍了无人机的理论,概念,设计,仿真研究以及最后的硬件设计/开发。其次,证明并证明了机载能量收集方面的重大改进,能够增加飞行时间和有效载荷能力第三,论文定义了一种新的驱动原理,称为固定频率,可变幅度(FiFVA)。事实证明,通过在机翼接头上使用无源弹性构件,可以进一步显着提高能效,从而降低了输入功率要求。在许多情况下,预计执行效率会提高100%以上。促动发展的自然演变导致发明了两种新颖的促动机制,旨在说明FiFVA促动原理,从而显示出节能效果和扑动效率的提高。最后,本文提出了两种设计,开发的补充工作。新颖的微体系结构和控制(MARC)航空电子平台(自动驾驶仪),以演示四翼襟翼原型机上的飞行控制和通信功能。还提出了一种新型的旨在改善拍打运动的提升/推力性能的被动羽化机构。1.研究成果:1。一种新颖的四翼MAV配置(称为QV),用于显着增加飞行时间和有效载荷能力; 2。用于四翼MAV设计的新颖6DoF飞行控制定律; 3。一种新颖的共振拍打原理,称为FiFVA,可通过在翼节(弹簧)上使用被动弹性元件来显着提高拍打效率。4。两个新颖的FiFVA操作的机械致动原型和一个功能完备的Quad-Wing MAV原型,带有两个本地开发的微体系结构和控制(MARC)航空电子平台。

著录项

  • 作者

    Ratti, Jayant.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Robotics.;Electrical engineering.;Aerospace engineering.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 164 p.
  • 总页数 164
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号