首页> 外文学位 >Electrostatic layer-by-layer assembly of hybrid thin films using polyelectrolytes and inorganic nanoparticles.
【24h】

Electrostatic layer-by-layer assembly of hybrid thin films using polyelectrolytes and inorganic nanoparticles.

机译:使用聚电解质和无机纳米粒子的混合薄膜的静电逐层组装。

获取原文
获取原文并翻译 | 示例

摘要

Polymer/inorganic nanoparticle hybrid thin films, primarily composed of functional inorganic nanoparticles, are of great interest to researchers because of their interesting electronic, photonic, and optical properties. In the past two decades, layer-by-layer (LbL) assembly has become one of the most powerful techniques to fabricate such hybrid thin films. This method offers an easy, inexpensive, versatile, and robust fabrication technique for multilayer formation, with precisely controllable nanostructure and tunable properties. In this thesis, various ways to control the structure of hybrid thin films, primarily composed of polyelectrolytes and indium tin oxide (ITO), are the main topics of study. ITO is one of the most widely used conductive transparent oxides (TCOs) for applications such as flat panel displays, photovoltaic cells, and functional windows.;In this work, polyethyleneimine (PEI) was used to stabilize the ITO suspensions and improve the film buildup rate during the LbL assembly of poly(sodium 4-styrenesulfonate) (PSS) and ITO. The growth rate was doubled due to the stronger interaction forces between the PSS and PEI-modified ITO layer. The assembly of hybrid films was often initiated by a polyelectrolyte precursor layer, and the characteristics of the precursor layer were found to significantly affect the assembly of the hybrid thin films. The LbL assembly of ITO nanoparticles was realized on several substrates, including cellulose fibers, write-on transparencies, silicon wafers, quartz crystals, and glasses. By coating the cellulose fibers with ITO nanoparticles, a new type of conductive paper was manufactured. By LbL assembly of ITO on write-on transparencies, transparent conductive thin films with conductivity of 10-4 S/cm and transparency of over 80 % in the visible range were also prepared.;As a result of this work on the mechanisms and applications of LbL grown films, the understanding of the LbL assembly of polyelectrolytes and inorganic nanoparticles was significantly extended. In addition to working with ITO nanoparticles, this thesis also demonstrated the ability to grow bicomponent [PEI/SiO2]n thin films. It was further demonstrated that under the right pH conditions, these films can be grown exponentially (e-LbL), resulting in much thicker films, consisting of mostly the inorganic nanoparticles, in much fewer assembly steps than traditional linearly grown films (l-LbL). These results open the door to new research opportunities for achieving structured nanoparticle thin films, whose functionality depends primarily on the properties of the nanoparticles.
机译:主要由功能性无机纳米粒子组成的聚合物/无机纳米粒子混合薄膜,由于其有趣的电子,光子和光学特性而引起了研究者的极大兴趣。在过去的二十年中,逐层(LbL)组装已成为制造此类混合薄膜的最强大技术之一。该方法为多层形成提供了一种简单,廉价,通用且坚固的制造技术,具有可精确控制的纳米结构和可调特性。本文主要研究以聚电解质和氧化铟锡(ITO)为主要成分的混合薄膜结构的各种控制方法。 ITO是用于平板显示器,光伏电池和功能窗等应用的最广泛使用的导电透明氧化物(TCO)之一;在这项工作中,聚乙烯亚胺(PEI)用于稳定ITO悬浮液并改善薄膜堆积聚(4-苯乙烯磺酸钠)(PSS)和ITO在LbL组装过程中的速率。由于PSS和PEI改性的ITO层之间更强的相互作用力,因此使增长率提高了一倍。杂化膜的组装通常由聚电解质前体层引发,并且发现前体层的特性显着影响杂化薄膜的组装。 ITO纳米粒子的LbL组装是在几种基材上实现的,包括纤维素纤维,可写透明胶片,硅片,石英晶体和玻璃。通过用ITO纳米颗粒涂覆纤维素纤维,制造了一种新型的导电纸。通过在写入透明胶片上进行ITO的LbL组装,还制备了电导率为10-4 S / cm,可见光范围内的透明度超过80%的透明导电薄膜。对于LbL生长的薄膜,对聚电解质和无机纳米粒子的LbL组装的理解得到了极大的扩展。除了使用ITO纳米颗粒外,本论文还证明了能够生长双组分[PEI / SiO2] n薄膜的能力。进一步证明,在合适的pH条件下,这些膜可以指数生长(e-LbL),与传统的线性生长膜(l-LbL)相比,其组装步骤要少得多,从而形成的膜要厚得多,主要由无机纳米颗粒组成)。这些结果为获得结构化的纳米颗粒薄膜提供了新的研究机会,其功能主要取决于纳米颗粒的性质。

著录项

  • 作者

    Peng, Chunqing.;

  • 作者单位

    Georgia Institute of Technology.;

  • 授予单位 Georgia Institute of Technology.;
  • 学科 Engineering Materials Science.;Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号