首页> 外文学位 >Thermodynamic and Kinetic Properties of Metal Hydrides from First-Principles Calculations.
【24h】

Thermodynamic and Kinetic Properties of Metal Hydrides from First-Principles Calculations.

机译:从第一性原理计算得出金属氢化物的热力学和动力学性质。

获取原文
获取原文并翻译 | 示例

摘要

In an effort to minimize the worldwide dependence on fossil fuels, much research has focused on the development of hydrogen fuel cell vehicles. Among the many challenges currently facing the transition to such an alternative energy economy is the storage of hydrogen in an economical and practical way. One class of materials that has presented itself as a possible candidate is solid metal hydrides. These materials chemically bind hydrogen and on heating, release the gas which can then be used to generate power as needed for the vehicle. In order to meet guidelines that have been set for such a storage system, hydrogen must be released rapidly in a narrow temperature range of -40 to 80°C with all reactions being reversible. This sets both thermodynamic and kinetic requirements for the design of candidate metal hydrides.;First-principles calculations are well-suited for the task of exploring reactions involving metal hydrides. Here, density-functional theory is used to calculate properties of these materials at the quantum mechanical level of accuracy. In particular, three systems have been investigated:;1. Li-Mg-N-H. Reactions between all known compounds in this system are systematically investigated in order to predict thermodynamically allowed reactions that release hydrogen. The properties of these reactions are compared to the requirements set for hydrogen storage systems. Additionally, ground-state structures are predicted for Li2Mg(NH)2 and Li 4Mg(NH)3.;2. Na-Al-H. The kinetics of mass transport during the (de)hydrogenation of the well-known metal hydride NaAlH4 are investigated. A model is developed to study the flux of native defects through phases involved in these reactions. Since it is also known that titanium is an effective catalyst for both dehydrogenation and rehydrogenation, the effect of Ti substitution in bulk lattices on the kinetics of mass transport is investigated. Results are compared to experiments in order to determine if mass transport represents the rate-limiting process during de- or rehydrogenation and what the effect of Ti may be.;3. Si-H. Properties of the recently synthesized compound SiH4(H 2)2 are investigated. Under high pressures, hydrogen binding to SiH4 exhibits characteristics of both physical and chemical bonds. A ground-state structure is predicted for this phase and the vibrational and bonding properties are investigated in order to determine the origin of the unusual binding between H2 and SiH4.
机译:为了最大程度地减少对化石燃料的全球依赖,许多研究都集中在氢燃料电池汽车的开发上。当前向这种替代能源经济过渡所面临的众多挑战中,以经济和实用的方式来存储氢。表现为可能的候选者的一类材料是固体金属氢化物。这些材料化学键合氢,并在加热时释放出气体,然后可将其用于产生车辆所需的动力。为了满足为这种存储系统设定的准则,必须在-40至80°C的狭窄温度范围内迅速释放氢气,且所有反应都是可逆的。这为候选金属氢化物的设计设定了热力学和动力学要求。第一原理计算非常适合探索涉及金属氢化物的反应的任务。在这里,密度泛函理论用于在精度的量子力学水平上计算这些材料的性能。特别是,已经研究了三个系统:1.。 Li-Mg-N-H。为了预测释放氢的热力学允许的反应,系统地研究了该系统中所有已知化合物之间的反应。将这些反应的性质与氢存储系统设定的要求进行比较。此外,预测了Li2Mg(NH)2和Li 4Mg(NH)3.; 2的基态结构。钠铝氢研究了众所周知的金属氢化物NaAlH4在(脱氢)加氢过程中的质量传输动力学。开发了一个模型来研究这些反应所涉及的各阶段中自然缺陷的通量。由于还知道钛对于脱氢和再氢化都是有效的催化剂,因此研究了体晶格中Ti的取代对传质动力学的影响。将结果与实验进行比较,以确定传质是否代表脱氢或再氢化过程中的限速过程以及Ti的作用。3。硅氢研究了最近合成的化合物SiH4(H 2)2的性质。在高压下,与SiH4结合的氢表现出物理和化学键的特征。预测该相的基态结构,并研究振动和键合特性,以确定H2和SiH4之间异常结合的起源。

著录项

  • 作者

    Michel, Kyle Jay.;

  • 作者单位

    University of California, Los Angeles.;

  • 授予单位 University of California, Los Angeles.;
  • 学科 Engineering Materials Science.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 162 p.
  • 总页数 162
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号