首页> 外文学位 >The synthesis and characterization of aluminum nanoparticles passivated with epoxides and graphite and the modeling of size-dependent enthalpy of reaction.
【24h】

The synthesis and characterization of aluminum nanoparticles passivated with epoxides and graphite and the modeling of size-dependent enthalpy of reaction.

机译:环氧化物和石墨钝化的铝纳米颗粒的合成,表征以及与反应大小相关的焓的建模。

获取原文
获取原文并翻译 | 示例

摘要

Aluminum nanoparticles (Al NPs) show great promise for a variety of high-energy applications. Two problems exist in synthesizing Al NPs: kinetic instability to grain growth and oxidation. Therefore, a capping agent must be introduced to passivate the Al NPs. This thesis presents two passivation schemes. One reaction scheme is to use the Al NP to polymerize alkyl-substituted epoxides to produce a polyether passivating layer. Fourier transform infrared (FTIR) and carbon-13 nuclear magnetic resonance (NMR) show that a polyether is created. Powder X-ray diffraction (PXRD) and transmission electron microscopy (TEM) show the presence of ∼15 nm particle with a ∼7 nm thick polyether layer. Hydrogen gas emission and back-EDTA titration shows that the air stability of the material depends on the size of the alkyl-substituent chain of the epoxide and the moisture content in the air. The larger substituent chain of epoxydodecane protects the Al NP core better than epoxyhexane and epoxyisobutane, and epoxyisobutane-capped Al NPs are pyrophoric. Differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) shows that the Al NPs capped with epoxydodecane combusts completely unlike the Al NPs capped with epoxyhexane. Of what is reported to date, Al NPs capped with epoxydodecane have the highest air stability of any organically-capped Al NPs by over an order of magnitude. The 10:1 and 5:1 Al NPs capped with epoxydodecane have active Al content over 90% when exposed less than 30 minutes.;The other reaction mechanism uses graphite to coat the Al NPs. Initially, a self-assembled monolayer (SAM) of dodecylamine is developed on the surface of Al NPs. Then, the resulting nanopowder is sealed in a glass tube under vacuum and heated at 550 °C for 12 h. During the roasting process, the SAM pyrolyzes into graphite. FTIR shows no observable peaks for the Al NPs capped with dodecylamine roasted at 550 °C. The metallic Al content is lower and attributable to a layer of aluminum nitride.;This thesis also discusses a model describing the particle size dependence of the oxidation enthalpy of the Al NPs. The model includes the size dependence of the reactant nanoparticles, the size dependence of the product lattice energy, extent of product agglomeration, and surface capping agents. The strongest effects on Al NP energy release occur for particle diameters below 10 nm, with enhanced energy release for agglomerated oxide products and decreased energy release for nanoscale oxide products.
机译:铝纳米颗粒(Al NPs)在各种高能量应用中显示出巨大的希望。合成铝纳米颗粒存在两个问题:晶粒生长和氧化的动力学不稳定。因此,必须引入封端剂以钝化Al NP。本文提出了两种钝化方案。一种反应方案是使用Al NP聚合烷基取代的环氧化物以产生聚醚钝化层。傅里叶变换红外(FTIR)和碳13核磁共振(NMR)表明生成了聚醚。粉末X射线衍射(PXRD)和透射电子显微镜(TEM)显示存在〜15 nm粒子,聚醚层约〜7 nm。氢气排放和反EDTA滴定表明,材料的空气稳定性取决于环氧化物的烷基取代基链的大小和空气中的水分含量。环氧十二烷的较大取代基链比环氧己烷和环氧异丁烷更好地保护Al NP核,并且环氧异丁烷封端的Al NPs是发火的。差示扫描量热法/热重分析(DSC / TGA)表明,用环氧十二烷封端的Al NPs完全燃烧,而不用用环氧己烷封端的Al NPs燃烧。在迄今为止的报道中,用环氧十二烷封端的Al NPs在所有有机封端的Al NPs中的空气稳定性最高,超过一个数量级。用环氧十二烷封端的10:1和5:1 Al NPs在暴露少于30分钟时活性Al含量超过90%;;另一种反应机理是用石墨涂覆Al NPs。最初,十二烷基胺的自组装单层(SAM)形成在Al NPs的表面上。然后,将所得的纳米粉末在真空下密封在玻璃管中,并在550℃下加热12小时。在烘烤过程中,SAM会热解为石墨。 FTIR显示在550°C焙烧的十二烷基胺封端的Al NPs没有观察到峰。金属铝含量较低,可归因于氮化铝层。;本文还讨论了描述铝纳米颗粒氧化焓的粒度依赖性的模型。该模型包括反应物纳米颗粒的尺寸依赖性,产物晶格能量的尺寸依赖性,产物附聚程度和表面封端剂。小于10 nm的粒径对Al NP能量释放产生最强烈的影响,团聚的氧化物产物的能量释放增强,而纳米氧化物产物的能量释放减少。

著录项

  • 作者

    Chung, Stephen W.;

  • 作者单位

    Saint Louis University.;

  • 授予单位 Saint Louis University.;
  • 学科 Chemistry Inorganic.;Engineering Materials Science.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 156 p.
  • 总页数 156
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号