首页> 外文学位 >Calcium-carbonate cementation in the meteoric-marine mixing zone: Processes and criteria for recognition.
【24h】

Calcium-carbonate cementation in the meteoric-marine mixing zone: Processes and criteria for recognition.

机译:流星-海洋混合区的碳酸钙胶结作用:识别的过程和标准。

获取原文
获取原文并翻译 | 示例

摘要

This study investigates the processes and products of mixing-zone diagenesis using integrated stratigraphic, petrographic, and geochemical data from the Cretaceous carbonates of Monte Camposauro, Italy, the Plio-Pleistocene Hope Gate Formation of Jamaica, and the Pleistocene speleothems of Sa Bassa Blanca cave, Mallorca, Spain. In contrast to the perception that dolomitization and dissolution are the major processes in meteoric-marine mixing zones, the results show that calcite and aragonite cements are common in mixing zones. Mixing-zone cements include bladed, radial-fibrous, and overgrowth low-Mg calcite, bladed and dendritic high-Mg calcite, microporous calcite with variable Mg-content, and acicular aragonite. It is well known that cements with similar morphology and mineralogy form in other diagenetic environments; this study shows that morphology and mineralogy are not particularly useful in identifying mixing-zone cements. The distribution of mixing-zone δ18O and δ13C data are virtually indistinguishable from those of marine cements, that have partially recrystallized in meteoric water, and physical mixtures of meteoric and marine cements. Thus, δ18O and δ13C analyses are not particularly reliable in identifying mixing-zone cements. Likewise, 87Sr/86Sr, Sr, Mg, Fe, Mn, and SO42− are similarly complex in mixing-zone precipitates. Fluid inclusion Tm ice is a more reliable tool for identifying mixing-zone cements.; Fluid inclusion Tm ice data show that precipitation took place from a wide range of salinities. Thus, mixing ratio does not determine if there is dissolution or precipitation. Mixing-zone speleothems of Sa Bassa Blanca cave have distributions, δ18O, and δ13C indicating that they precipitated because of CO2 degassing at and just below the water-air interface of cave pools. Petrography, Sr, and Mg content of mixing-zone precipitates of the Hope Gate Formation indicate that aragonite dissolution caused precipitation in the mixing zone.; Secular variation of seawater chemistry has affected the mineralogy of mixing-zone precipitates. The mixing-zone precipitates of Monte Camposauro are low-Mg calcite, which is in accordance with the mineralogy expected during the Cretaceous “calcite seas”. In contrast, the mixing-zone precipitates of the Hope Gate Formation and Sa Bassa Blanca cave are mostly high-Mg calcite and aragonite, which is in accordance with the mineralogy expected during Pleistocene aragonite seas.
机译:这项研究使用来自意大利蒙特坎波帕苏罗的白垩纪碳酸盐岩,牙买加的上新世-希望新世希望门组以及萨巴萨布兰卡洞穴的更新世洞穴发育的综合地层学,岩石学和地球化学数据,研究了混合带成岩作用的过程和产物。 ,西班牙马略卡岛。与白云石化和溶解是陨石海洋混合区的主要过程的认识相反,结果表明方解石和文石水泥在混合区很常见。混合区胶结物包括刀状,放射状和过度生长的低镁方解石,刀状和树枝状高镁方解石,含镁量可变的微孔方解石和针状文石。众所周知,在其他成岩环境中,具有相似形态和矿物学形态的胶结物。这项研究表明,形态学和矿物学在识别混合带胶结物中不是特别有用。混合区δ 18 O和δ 13 C的分布与在水环境中部分重结晶的海洋水泥和物理混合物形成的海洋水泥几乎没有区别。和船用水泥。因此,δ 18 O和δ 13 C分析在识别混合带胶结物中不是特别可靠。同样, 87 Sr / 86 Sr,Sr,Mg,Fe,Mn和SO 4 2-是在混合区沉淀物中类似地复杂。流体包裹体Tm冰是识别混合区胶结物的更可靠工具。流体包裹体Tm冰的数据表明,降水来自多种盐度。因此,混合比不能确定是否存在溶解或沉淀。萨巴萨布兰卡洞穴的混合带鞘脂具有δ 18 O和δ 13 C的分布,表明它们是由于CO 2 脱气而沉淀的在洞穴池的水-空气界面处和下方。希望门组混合区析出物的岩石学,锶和镁含量表明文石溶解导致混合区析出。海水化学作用的长期变化影响了混合区沉淀物的矿物学。 Monte Camposauro的混合区沉淀物是低镁方解石,这与白垩纪“方解石海”期间预期的矿物学相符。相反,希望门组和萨巴萨布兰卡洞穴的混合带沉淀物主要是高镁方解石和文石,这与更新世文石海中的预期矿物学相符。

著录项

  • 作者

    Csoma, Anita Eva.;

  • 作者单位

    University of Kansas.;

  • 授予单位 University of Kansas.;
  • 学科 Geology.; Geochemistry.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 地质学;地质学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号