首页> 外文学位 >The roles of majorization and generalized triangular decomposition in communication and signal processing.
【24h】

The roles of majorization and generalized triangular decomposition in communication and signal processing.

机译:广义和广义三角分解在通信和信号处理中的作用。

获取原文
获取原文并翻译 | 示例

摘要

The main contribution of this thesis is toward the use of majorization and generalized triangular decomposition (GTD) to the theory and many applications of signal processing. In particular, the focus is on developing new signal processing methods based on these mathematical tools for digital communication, data compression, and filter bank design.;The first part of the thesis focuses on transceiver design for multiple-input multiple-output (MIMO) communications. The first problem considered is the joint optimization of transceivers with linear precoders, decision feedback equalizers (DFEs), and bit allocation schemes for frequency flat MIMO channels. We show that the generalized triangular decomposition offers an optimal family of solutions to this problem. This general framework incorporates many existing designs, such as the optimal linear transceiver, the ZF-VBLAST system, and the geometric mean decomposition (GMD) transceiver, as special cases. It also predicts many novel optimal solutions that have not been observed before. We also discuss the use of each of these theoretical solutions under practical considerations. In addition to total power constraints, we also consider the transceiver optimization under individual power constraints and other linear constraints on the transmitting covariance matrix, which includes a more realistic individual power constraint on each antenna. We show the use of semidefinite programming (SDP), and the theory of majorization again provides a general framework for optimizing the linear transceivers as well as the DFE transceivers. The transceiver design for frequency selective MIMO channels is then considered. Block diagonal GMD (BD-GMD), which is a special instance of GTD with block diagonal structure in one of the semi-unitary matrices, is used to design transceivers that have many desirable properties in both performance and computation.;The second part of the thesis focuses on signal processing algorithms for data compressions and filter bank designs. We revisit the classical transform coding problem (for optimizing the theoretical coding gain in the high bit rate regime) from the view point of GTD and majorization theory. A general family of optimal transform coders is introduced based on GTD. This family includes the Karhunen-Loeve transform (KLT), and the prediction-based lower triangular transform (PLT) as special cases. The coding gain of the entire family, with optimal bit allocation, is maximized and equal to those of the KLT and the PLT. Other special cases of the GTD-TC are the GMD (geometric mean decomposition) and the BID (bidiagonal transform). The GMD in particular has the property that the optimum bit allocation is a uniform allocation. We also propose using dither quantization in the GMD transform coder. Under the uniform bit loading scheme, it is shown that the proposed dithered GMD transform coders perform significantly better than the original GMD coder in the low rate regime.;Another important signal processing problem, namely the filter bank optimization based on the knowledge of input signal statistics, is then considered. GTD and the theory of majorization are again used to give a new look to this classical problem. We propose GTD filter banks as subband coders for optimizing the theoretical coding gain. The orthonormal GTD filter bank and the biorthogonal GTD filter bank are discussed in detail. We show that in both cases there are two fundamental properties in the optimal solutions, namely, total decorrelation and spectrum equalization. The optimal solutions can be obtained by performing the frequency dependent GTD on the Cholesky factor of the input power spectrum density matrices. We also show that in both theory and numerical simulations, the optimal GTD subband coders have superior performance than optimal traditional subband coders. In addition, the uniform bit loading scheme can be used in the optimal biorthogonal GTD coders with no loss of optimality. This solves the granularity problem in the conventional optimum bit loading formula. The use of the GTD filter banks in frequency selective MIMO communication systems is also discussed. Finally, the connection between the GTD filter bank and the traditional filter bank is clearly indicated. (Abstract shortened by UMI.)
机译:本文的主要贡献是对信号处理的理论和许多应用都使用了广义和广义三角分解法。具体来说,重点是基于这些数学工具开发用于数字通信,数据压缩和滤波器组设计的新信号处理方法。本文的第一部分着重于多输入多输出(MIMO)的收发器设计。通讯。需要考虑的第一个问题是对带有线性预编码器,判决反馈均衡器(DFE)和频率平坦MIMO信道的比特分配方案的收发器进行联合优化。我们表明,广义三角分解为该问题提供了最佳的解决方案。这种通用框架结合了许多现有设计,例如特殊情况下的最佳线性收发器,ZF-VBLAST系统和几何均值分解(GMD)收发器。它还预测了许多以前从未发现过的新颖的最佳解决方案。我们还将在实际考虑的情况下讨论这些理论解决方案的使用。除了总功率约束外,我们还考虑了在单个功率约束和发射协方差矩阵上其他线性约束下的收发器优化,其中包括在每个天线上更现实的单个功率约束。我们展示了半定编程(SDP)的使用,并且主化理论再次为优化线性收发器和DFE收发器提供了一个通用框架。然后考虑用于频率选择性MIMO信道的收发器设计。块对角GMD(BD-GMD)是GTD的特殊实例,在半单位矩阵之一中具有块对角结构,用于设计在性能和计算方面都具有许多理想特性的收发器。本文主要研究用于数据压缩和滤波器组设计的信号处理算法。从GTD和主化理论的角度,我们重新审视了经典的变换编码问题(用于在高比特率状态下优化理论编码增益)。介绍了一个基于GTD的通用变换编码器的通用系列。该族包括Karhunen-Loeve变换(KLT)和基于预测的下三角变换(PLT)作为特例。具有最佳比特分配的整个系列的编码增益被最大化并等于KLT和PLT的编码增益。 GTD-TC的其他特殊情况是GMD(几何均值分解)和BID(双对角变换)。特别地,GMD具有最佳比特分配是统一分配的特性。我们还建议在GMD变换编码器中使用抖动量化。结果表明,在均匀比特加载方案下,所提出的抖动GMD变换编码器在低速率状态下的性能明显优于原始GMD编码器。另一个重要的信号处理问题,即基于输入信号知识的滤波器组优化统计数据,然后考虑。 GTD和专业化理论再次被用来重新审视这个经典问题。我们建议使用GTD滤波器组作为子带编码器,以优化理论编码增益。详细讨论了正交GTD滤波器组和双正交GTD滤波器组。我们表明,在两种情况下,最优解都有两个基本属性,即总去相关和频谱均衡。可以通过对输入功率谱密度矩阵的Cholesky因子执行与频率相关的GTD来获得最佳解。我们还表明,在理论和数值模拟中,最佳GTD子带编码器均比最佳传统子带编码器具有更好的性能。另外,可以在最佳双正交GTD编码器中使用统一的位加载方案,而不会失去最佳性。这解决了常规最佳比特加载公式中的粒度问题。还讨论了GTD滤波器组在频率选择MIMO通信系统中的使用。最后,明确指出了GTD滤波器组和传统滤波器组之间的连接。 (摘要由UMI缩短。)

著录项

  • 作者

    Weng, Ching-Chih.;

  • 作者单位

    California Institute of Technology.;

  • 授予单位 California Institute of Technology.;
  • 学科 Engineering Electronics and Electrical.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号