首页> 外文学位 >Identification and Characterization of Soybean Pigmentation Genes and Metabolic Engineering Seed Coat Color to Enable Visual Identification of Transgenic Grains.
【24h】

Identification and Characterization of Soybean Pigmentation Genes and Metabolic Engineering Seed Coat Color to Enable Visual Identification of Transgenic Grains.

机译:大豆色素沉着基因的鉴定和表征以及代谢工程种子的外壳颜色,使目测鉴定转基因谷物成为可能。

获取原文
获取原文并翻译 | 示例

摘要

The inability to effectively detect and quantify the levels of adventitious presence of genetically modified (GM) plant grains in non-GM shipments represents a key issue that threatens the adoption of GM commodities in the worldwide market. A potentially safe and economical solution for effective detection is to produce distinct colors in GM grains of natural products by metabolic engineering. Successful attempts to engineer colored GM grains have been limited to the overexpression of plant pigment (anthocyanin) transcription factors in Arabidopsis, tobacco, and maize. The question of our research was whether soybean grain color could be manipulated by the suppression of late-stage pigment genes. The potential benefit of this approach would be to impart less unintended effects on the plant system than the induction of numerous genes by overexpression of a transcription factor. Towards testing our hypothesis, I first identified the anthocyanin branchpoint gene UGT78K1 encoding UDP-glycose:flavonoid-3-O-glycosyltransferase (UF3GT) from the black soybean seed coat and demonstrated its encoded activity in vitro, and by complementation of the Arabidopsis ugt78d2 knock-out mutation. Subsequently, I identified a second UF3GT gene (UGT78K2 ) and the gene OMT5 coding anthocyanin-3'-O-methyltransferase (AOMT) from the black seed coat by comparing metabolite and transcriptome data between isogenic black and brown soybean seed coats differing in alleles of the R locus. The proanthocyanidin (PA) branchpoint genes ANR1 and ANR2 coding anthocyanidin reductase (ANR) enzymes were then isolated from the brown soybean seed coat using RACE and the activities of their encoded enzymes were demonstrated in vitro . In the latter two studies we used liquid chromatography- tandem mass spectrometry (LC-MS/MS) and microarray and/or quantitative (q)RT-PCR for combined analyses of seed coat metabolite and gene expression data from brown, black, and red-brown soybean genotypes. From this data we hypothesized and confirmed that a red-brown soybean grain color could be engineered by the simultaneous suppression of ANR1 and ANR2 using RNA interference (RNAi) in brown soybean. The underlying mechanism was identified to involve positive feedback and feedforward mechanisms in the flavonoid pathway to redirect metabolic flux into anthocyanin biosynthesis. These results represent a novel approach to engineering pigmentation in plant tissues.
机译:无法有效地检测和量化非转基因货物中转基因(GM)植物谷物的不定存在水平是一个关键问题,它威胁着全球市场上转基因商品的采用。有效检测的一种潜在安全且经济的解决方案是通过代谢工程在天然产物的转基因谷物中产生独特的颜色。工程化彩色转基因谷物的成功尝试仅限于拟南芥,烟草和玉米中植物色素(花色素苷)转录因子的过表达。我们研究的问题是是否可以通过抑制后期色素基因来操纵大豆的籽粒颜色。这种方法的潜在好处是,与通过转录因子的过表达诱导众多基因相比,对植物系统的意外影响要小。为了检验我们的假设,我首先从黑大豆种皮中鉴定了编码UDP-糖:类黄酮-3-O-糖基转移酶(UF3GT)的花色苷分支点基因UGT78K1,并通过与拟南芥ugt78d2敲除互补,证明了其编码活性。突变。随后,我通过比较黑豆和棕色大豆种皮的等位基因不同等位基因的代谢物和转录组数据,从黑种皮中鉴定出第二个UF3GT基因(UGT78K2)和编码花青素-3'-O-甲基转移酶(AOMT)的基因OMT5。 R轨迹。然后使用RACE技术从褐大豆种皮中分离出原花青素(PA)分支点基因ANR1和ANR2编码花青素还原酶(ANR)酶,并证明了其编码酶的活性。在后两项研究中,我们使用液相色谱-串联质谱(LC-MS / MS)和微阵列和/或定量(q)RT-PCR进行了种皮代谢物和棕色,黑色和红色基因表达数据的组合分析-棕色大豆基因型。根据这些数据,我们进行了假设并证实,可以通过使用棕色大豆中的RNA干扰(RNAi)同时抑制ANR1和ANR2来设计出红褐色的大豆谷物颜色。确定了潜在的机制,涉及在类黄酮途径中涉及正反馈和前馈机制,以将代谢通量重定向至花色苷生物合成。这些结果代表了一种工程化植物组织中色素沉着的新方法。

著录项

  • 作者

    Kovinich, Nikola.;

  • 作者单位

    Carleton University (Canada).;

  • 授予单位 Carleton University (Canada).;
  • 学科 Biology Molecular.;Chemistry Biochemistry.;Agriculture Plant Culture.;Biology Genetics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号