首页> 外文学位 >Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings.
【24h】

Synthesis of Doped Semiconductor Nanocrystals and Conductive Coatings.

机译:掺杂半导体纳米晶体和导电涂层的合成。

获取原文
获取原文并翻译 | 示例

摘要

Semiconductor nanocrystals are an intriguing class of materials because of their size-tunable properties. This makes them promising for future optoelectronic devices such as solar cells and light emitting diodes. Realization of these devices, however, requires precise control of the flow of electricity through the particles. In bulk semiconductors, this is achieved by using materials with few unintentional defects, then intentionally adding particular defects or dopants to alter the semiconductor's electronic properties. In contrast, the addition of electrically active dopants has scarcely been demonstrated in semiconductor nanocrystals, and charge transport is hindered by the barrier of electron hopping between particles.;The goal of this thesis, therefore, is to discover new methods to control charge transport in nanocrystals. It divides into three major thrusts: 1) the investigation of the doping process in semiconductor nanocrystals, 2) the invention of new synthetic methods to incorporate electrically active dopants into semiconductor nanocrystals, and 3) the invention of a new nanocrystal surface coating that aids processing of nanocrystals into devices but can be removed to enhance charge transport between particles.;The first objective is achieved by the comparison of four different precursors that have been used to dope Mn into nanocrystals. Experiments show that dimethylmanganese incorporates efficiently into ZnSe nanocrystals while other precursors are less efficient and sometimes lower the quality of the nanocrystals produced.;The second goal is met by the application of a core-shell synthetic strategy to the incorporation of non-isovalent impurities (Al and In) into CdSe nanocrystals. By separating the three steps of nucleation, dopant binding, and growth, each step can be optimized so that doping is achieved and high quality particles are produced. Detailed characterization shows dopant incorporation and local environment, while transistor measurements reveal that the nanocrystal Fermi level rises with increasing Al content.;The third thrust is achieved by the use of primary dithiocarbamates as ligands to stabilize CdSe, and PbSe / CdSe core/shell nanoparticles. Primary dithiocarbamates bind well to metals but include a weak chemical bond that can be broken with gentle heating. This enables us to bind them to nanoparticles, process the particles into devices, then remove the ligand via gentle heating. Characterization of the ligand-particle interactions show excellent ligand binding to the particle surface and easy ligand removal with heating. After ligand removal, the inter-particle spacing shrinks. Transistor measurements reveal that this reduces the barrier to interparticle electron transport, enhancing the conductivity of the film.
机译:半导体纳米晶体由于其尺寸可调的特性而成为一类有趣的材料。这使得它们对于诸如太阳能电池和发光二极管之类的未来光电子器件有希望。然而,这些装置的实现需要精确控制通过颗粒的电流。在体半导体中,这是通过使用具有很少的非故意缺陷的材料,然后有意地添加特定的缺陷或掺杂剂来改变半导体的电子特性来实现的。相比之下,几乎没有在半导体纳米晶体中证明电活性掺杂剂的添加,并且粒子之间的电子跳跃势垒阻碍了电荷的传输。因此,本发明的目的是发现控制电势掺杂的新方法。纳米晶体。它分为三个主要方面:1)研究半导体纳米晶体中的掺杂工艺; 2)发明将电活性掺杂剂掺入半导体纳米晶体中的新合成方法; 3)发明新型纳米晶体表面涂层以帮助加工将第一个目的是通过将四种用于将Mn掺杂到纳米晶体中的不同前体进行比较来实现的。实验表明,二甲基锰可有效地掺入ZnSe纳米晶体中,而其他前体的效率较低,有时会降低所生产纳米晶体的质量。;第二个目标是通过将核-壳合成策略应用于非等价杂质的掺入( Al和In)成CdSe纳米晶体。通过将成核,掺杂剂结合和生长这三个步骤分开,可以优化每个步骤,从而实现掺杂并生产出高质量的颗粒。详细的表征显示了掺杂剂的掺入和局部环境,而晶体管测量表明纳米晶费米能级随Al含量的增加而增加。;第三推力是通过使用伯二硫代氨基甲酸酯作为配体来稳定CdSe和PbSe / CdSe核/壳纳米粒子。伯二硫代氨基甲酸酯与金属的结合力很好,但化学键较弱,在温和加热下会断裂。这使我们能够将它们结合到纳米颗粒上,将颗粒加工成装置,然后通过缓慢加热除去配体。配体-颗粒相互作用的表征显示出优异的配体与颗粒表面的结合,并且易于通过加热除去配体。除去配体后,颗粒间的间距缩小。晶体管测量表明,这减少了粒子间电子传输的势垒,从而提高了薄膜的电导率。

著录项

  • 作者

    Wills, Andrew Wilke.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Chemistry Inorganic.;Nanoscience.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 121 p.
  • 总页数 121
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号