首页> 外文学位 >Light Scattering and Absorption Spectroscopy in Three Dimensions Using Quantitative Low Coherence Interferometry for Biomedical Applications.
【24h】

Light Scattering and Absorption Spectroscopy in Three Dimensions Using Quantitative Low Coherence Interferometry for Biomedical Applications.

机译:使用生物医学应用中的定量低相干干涉法在三维上进行光散射和吸收光谱分析。

获取原文
获取原文并翻译 | 示例

摘要

The behavior of light after interacting with a biological medium reveals a wealth of information that may be used to distinguish between normal and disease states. This may be achieved by simply imaging the morphology of tissues or individual cells, and/or by more sophisticated methods that quantify specific surrogate biomarkers of disease. To this end, the work presented in this dissertation demonstrates novel tools derived from low coherence interferometry (LCI) that quantitatively measure wavelength-dependent scattering and absorption properties of biological samples, with high spectral resolution and micrometer spatial resolution, to provide insight into disease states.;The presented work first describes a dual window (DW) method, which decomposes a signal sampled in a single domain (in this case the frequency domain) to a distribution that simultaneously contains information from both the original domain and the conjugate domain (here, the temporal or spatial domain). As the name suggests, the DW method utilizes two independently adjustable windows, each with different spatial and spectral properties to overcome limitations found in other processing methods that seek to obtain the same information. A theoretical treatment is provided, and the method is validated through simulations and experiments. With this tool, the spatially dependent spectral behavior of light after interacting with a biological medium may be analyzed to extract parameters of interest, such as the scattering and absorption properties.;The DW method is employed to investigate scattering properties of samples using Fourier domain LCI (fLCI). In this method, induced temporal coherence effects provide insight into structural changes in dominant scatterers, such as cell nuclei within tissue, which can reveal the early stages of cancerous development. fLCI is demonstrated in complex, three-dimensional samples using a scattering phantom and an ex-vivo animal model. The results from the latter study show that fLCI is able to detect changes in the morphology of tissues undergoing precancerous development.;The DW method is also employed to enable a novel form of optical coherence tomography (OCT), an imaging modality that uses coherence gating to obtain micrometer-scale, cross-sectional information of tissues. The novel method, named molecular imaging true color spectroscopic OCT (METRiCS OCT), analyses the depth dependent absorption of light to ascertain quantitative information of chromophore concentration, such as hemoglobin. The molecular information is also processed to yield a true color representation of the sample, a unique capability of this approach. A number of experiments, including hemoglobin absorbing phantoms and in-vivo imaging of a chick embryo model and dorsal skinfold window chamber model, demonstrate the power of the method.;The final method presented in this dissertation, consists of a spectroscopic approach that interrogates the dispersive biochemical properties of samples to independently probe the scattering and absorption coefficients. To demonstrate this method, named non-linear phase dispersion spectroscopy (NLDS), a careful analysis of LCI signals is presented. The method is verified using measurements from samples that scatter and absorb light. Lastly, NLDS is combined with phase microscopy to achieve molecular imaging with sub-micron spatial resolution. Imaging of red blood cells (RBCs) shows that the method enables highly sensitive measurements that can quantify hemoglobin content from single RBCs.
机译:与生物介质相互作用后,光的行为揭示了大量可用于区分正常状态和疾病状态的信息。这可以通过简单地对组织或单个细胞的形态成像和/或通过量化疾病的特定替代生物标志物的更复杂的方法来实现。为此,本文提出的工作展示了从低相干干涉法(LCI)衍生出的新型工具,该工具可定量测量生物样品的波长依赖性散射和吸收特性,并具有高光谱分辨率和微米级空间分辨率,从而可以洞悉疾病状态本文提出的工作首先描述了一种双窗口(DW)方法,该方法将在单个域(在这种情况下为频域)中采样的信号分解为一个同时包含来自原始域和共轭域(此处为此处)信息的分布(时间或空间域)。顾名思义,DW方法利用两个独立可调的窗口,每个窗口具有不同的空间和光谱特性,以克服其他寻求获得相同信息的处理方法中的局限性。提供了理论处理,并通过仿真和实验验证了该方法。使用该工具,可以分析与生物介质相互作用后光在空间上的光谱行为,以提取感兴趣的参数,例如散射和吸收特性。; DW方法用于使用傅里叶域LCI研究样品的散射特性(fLCI)。在这种方法中,诱导的时间相干效应提供了对主要散射体(例如组织内的细胞核)结构变化的洞察力,这些变化可以揭示癌症发展的早期阶段。使用散射体模和离体动物模型在复杂的三维样本中证明了fLCI。后一项研究的结果表明,fLCI能够检测经历癌前发育的组织的形态变化.DW方法还被用于实现一种新形式的光学相干断层扫描(OCT),这是一种使用相干门控的成像方式获得微米级的组织横截面信息。这种称为分子成像真彩色光谱OCT(METRiCS OCT)的新方法分析了光的深度依赖性吸收,以确定诸如血红蛋白的生色团浓度的定量信息。还处理分子信息以产生样品的真实颜色表示,这是此方法的独特功能。许多实验,包括吸收血红蛋白的人体模型,以及鸡胚模型和背部皮褶窗腔室模型的体内成像,都证明了该方法的有效性。本论文提出的最后一种方法是通过光谱学方法样品的分散生化特性可独立探测散射和吸收系数。为了证明这种称为非线性相位色散光谱法(NLDS)的方法,我们对LCI信号进行了仔细的分析。使用散射和吸收光的样品的测量结果验证了该方法。最后,NLDS与相显微镜相结合,以实现亚微米空间分辨率的分子成像。对红细胞(RBC)的成像显示,该方法可以进行高度敏感的测量,从而可以量化单个RBC中的血红蛋白含量。

著录项

  • 作者

    Robles, Francisco E.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Health Sciences Radiology.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 163 p.
  • 总页数 163
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号