首页> 外文学位 >Cold polar molecules for novel collision experiments at low energies.
【24h】

Cold polar molecules for novel collision experiments at low energies.

机译:冷极性分子用于低能量的新型碰撞实验。

获取原文
获取原文并翻译 | 示例

摘要

Research in the field of cold polar molecules is progressing rapidly. An array of interesting topics is being developed including precision measurement and fundamental tests, quantum phase transitions, and ultracold chemistry. In particular, dipolar molecules in well-defined quantum states enable exquisite control of their interactions via applied electric fields. The long-range, anisotropic interaction between dipolar molecules leads to new collision dynamics that could be used for novel collective effects, quantum state engineering, and information processing. The focus of this Thesis is the production of cold samples of neutral OH molecules via Stark deceleration and magnetic trapping for novel collision experiments. This novelty results from our combination of cold external beams and trapped target molecules which facilitates observation of dipolar effects as well as lowtemperature collision resonances. The large permanent electric dipole moment of OH allows us to precisely tune the lab-frame velocity of the molecular packets from ∼ 500 m/s to rest. We have magnetically trapped OH packets at the terminus of our Stark decelerator at a temperature of 70 mK and density of 106 cm-3. With improved understanding of Stark deceleration, we optimize the decelerator efficiency and its coupling to the magnetic trap. Our latest trap design uses permanent ring magnets to create a three-dimensional magnetic quadrupole field. Use of magnetically trapped OH molecules for collision experiments with external beams allow us the unique opportunity of observing both elastic and inelastic collisions. In addition, the trap confinement yields sensitivity to differential elastic cross sections at low collision energies. This open magnetic trap has allowed measurement of collision cross sections between trapped OH and external supersonic beams of He and D2, the latter of which is of astrophysical interest due to the role of H 2-OH collisions in pumping interstellar OH megamasers. The combination of trapped OH molecules and temperaturetuned beams of He and D2 has facilitated measurement of the lowest-energy D2-OH collision cross sections yet reported. More recently, we report the first observation of electric-field dependent cross sections between two different species of cold polar molecules - OH and ND3 - thereby demonstrating control over molecular scattering in the cold regime. By combining for the first time the production techniques of Stark deceleration and buffer gas cooling, we increase the molecular interaction time by ∼ 105 over traditional crossed-beam experiments to gain enhanced sensitivity at the characteristic densities of cold molecule production.
机译:冷极性分子领域的研究进展迅速。正在开发一系列有趣的主题,包括精度测量和基础测试,量子相变和超冷化学。特别是,处于明确定义的量子态的偶极分子能够通过施加的电场精确控制其相互作用。偶极分子之间的远程各向异性相互作用导致了新的碰撞动力学,可用于新型的集体效应,量子态工程和信息处理。本论文的重点是通过Stark减速和磁阱生产中性OH分子的冷样品,用于新型碰撞实验。这种新颖性是由于我们结合了冷的外部光束和捕获的目标分子而产生的,这有利于观察偶极效应以及低温碰撞共振。 OH的巨大永久电偶极矩使我们能够精确地将分子包的实验室框架速度从〜500 m / s调整为静止。我们在Stark减速器的末端以70 mK的温度和106 cm-3的密度磁性捕获了OH包。通过对Stark减速的进一步了解,我们优化了减速器效率及其与磁阱的耦合。我们最新的陷波器设计使用永久环形磁铁来产生三维四极磁场。使用磁性捕获的OH分子与外部光束进行碰撞实验,使我们有机会观察弹性和非弹性碰撞。另外,陷阱的限制对低碰撞能量下的不同弹性横截面产生敏感性。这种开放式磁阱可以测量被捕获的OH与He和D2的外部超音波束之间的碰撞截面,由于H 2-OH碰撞在星际OH超大质量脉动中的作用,后者具有天体物理意义。捕获的OH分子与He和D2的温度调谐束的组合有助于测量迄今报道的最低能量的D2-OH碰撞截面。最近,我们首次报道了两种不同极性的冷极性分子OH和ND3之间的电场相关截面,从而证明了在冷态下对分子散射的控制。通过首次结合Stark减速和缓冲气体冷却的生产技术,我们将分子相互作用时间比传统的交叉束实验增加了约105倍,从而提高了在冷分子生产的特征密度下的灵敏度。

著录项

  • 作者

    Sawyer, Brian.;

  • 作者单位

    University of Colorado at Boulder.;

  • 授予单位 University of Colorado at Boulder.;
  • 学科 Physics Low Temperature.;Physics Molecular.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 226 p.
  • 总页数 226
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号