首页> 外文学位 >First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications.
【24h】

First-principles studies of complex hydrides for lithium-ion battery and hydrogen storage applications.

机译:用于锂离子电池和储氢应用的复合氢化物的第一性原理研究。

获取原文
获取原文并翻译 | 示例

摘要

We employ density functional theory in a computational study of two energy storage systems.;In the first, we explore the thermodynamic viability of light metal hydrides as a high capacity Li-ion battery negative electrode. Given a set of solid-state and gas-phase reactants, we have determined the phase diagram in the Li-Mg-B-N-H system in the grand canonical ensemble as a function of lithium electrochemical potential. We present computational results for several new conversion reactions with predicted capacities between 2400 and 4000 mAhg-1 that are thermodynamically favorable and that do not involve gas evolution. We provide experimental evidence for the reaction pathway on delithiation for the compound Li4BN3H10 and compare with our theoretical prediction. The maximum volume increase for these materials on lithium insertion is significantly smaller than that for Si, whose 400% expansion hinders its cyclability.;In the second study, we attempt to gain understanding of recent experimental results of lithium borohydride nanoconfined in highly ordered nanoporous carbon. The carbon environment is modeled as a single sheet of graphene, and adsorption energies are calculated for nanoparticles of the constituent phases of LiBH 4 desorption processes (LiBH4, LiH, lithium and boron). We find good agreement with previous studies of a single lithium atom adsorbed onto graphene. We predict that infiltrated LiBH4 will decompose such that boron is trapped in carbon vacancies, and that the resulting boron doping is required to achieve negative wetting energies for the remaining LiBH4. Desorption enthalpies are found to increase with shrinking cluster sizes, suggesting that the observed lowering of desorption temperatures is a kinetic effect although interactions with the carbon surface itself are predicted to have an overall effect of decreasing the desorption enthalpy .
机译:我们在两个储能系统的计算研究中采用密度泛函理论。首先,我们探讨了轻金属氢化物作为高容量锂离子电池负极的热力学可行性。给定一组固态和气相反应物,我们确定了在大正则系综中Li-Mg-B-N-H系统中的相图与锂电化学势的关系。我们提供了几个新的转化反应的计算结果,这些反应的预测容量在2400到4000 mAhg-1之间,在热力学上是有利的,并且不涉及气体逸出。我们提供了化合物Li4BN3H10脱锂反应途径的实验证据,并与我们的理论预测进行了比较。这些材料在插入锂时的最大体积增加量明显小于硅,后者的400%膨胀会阻碍其循环性。在第二项研究中,我们试图了解纳米级限制在高度有序的纳米多孔碳中的硼氢化锂的最新实验结果。 。将碳环境建模为单张石墨烯,并计算LiBH 4解吸过程(LiBH4,LiH,锂和硼)组成相的纳米粒子的吸附能。我们发现与先前对吸附在石墨烯上的单个锂原子的研究相吻合。我们预测渗透的LiBH4会分解,从而使硼陷于碳空位中,并且需要对硼进行掺杂,以实现其余LiBH4的负润湿能。发现解吸焓随簇尺寸的减小而增加,这表明观察到的解吸温度的降低是动力学效应,尽管与碳表面本身的相互作用被预测具有降低解吸焓的总体作用。

著录项

  • 作者

    Mason, Timothy Hudson.;

  • 作者单位

    Missouri University of Science and Technology.;

  • 授予单位 Missouri University of Science and Technology.;
  • 学科 Chemistry Physical.;Physics Solid State.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 159 p.
  • 总页数 159
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:24

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号