首页> 外文学位 >Investigation of dislocation behavior in micron and sub-micron thin films.
【24h】

Investigation of dislocation behavior in micron and sub-micron thin films.

机译:研究微米和亚微米薄膜中的位错行为。

获取原文
获取原文并翻译 | 示例

摘要

Plastic deformation in crystalline materials is mediated by dislocation motion and their interaction with defects, such as second phase particles, dislocations, grain boundaries and voids. In addition, grain boundaries, free and passivated surfaces have a significant impact on the evolution of dislocations and their intricate structures. In polycrystalline materials, the influence of dislocation motion and interactions results in unique mechanical properties, such as high yield stress and fracture strength and a dependency on grain size. It is observed that for an average grain size in the micron and sub-micron regime, the yield stress increases as the grain size decreases following a power law. This size effect is known as Hall Petch effect. A reliable computational model that describes the mechanical response and failure mechanisms of micron and sub-micron scale devices should incorporate these size effects.;A three-dimensional phase field dislocation dynamics model (3D PFDD) is developed. This is a dislocation based plasticity model that accounts for the motion and interactions of individual dislocations with material defects and interfaces, such as obstacles, and grain boundaries. This model is a valuable and efficient research tool that will help to understand plastic deformation on the mesoscopic level, bridging the gap between microscopic and macroscopic studies. For the research presented here, this model is used specifically to understand and simulate dislocation behavior in fcc (face-centered cubic) metal thin films, similar to those used in micro-electro-mechanical systems (MEMS).;Incorporating microstructure, such as grain boundaries, is key to accurately predicting deformation behavior in any system. Plastic deformation is affected by both the thickness of the film layers and by the resolution of the film's internal microstructure. In MEMS devices and components that are generally on the micron scale (hundreds of microns in size), the internal microstructure, such as grain size, shape, etc., is on the nano-scale (ranging from tens to hundreds of nanometers) (Chen et al., 2007; Van Swygenhoven et al., 1999a; Van Swygenhoven et al., 1999b). At this length scale, implementing partial dislocations into the PFDD code is important for modeling the correct dislocation behavior and hence in accurately predicting performance, reliability, and lifetime.;The investigation of size effects is a primary goal of this research, and has been achieved through the representation of the microstructure and partial dislocations in to the 3D PFDD model. This requires several steps detailed in the following thesis, including: validation against experiments, and verification of the model with analytical solutions and other simulation tools; parallelization of the code to allow for large-scale simulations on high performance computing resources; and collaboration and connections to simulation tools at length scales both above and below the mesoscale.;Simulations have been completed and analyzed for Nickel thin films undergoing plastic deformation. Overall performance and efficiency of the parallel algorithm is discussed, along with comparison to analytical solutions and modified continuum models. In addition, the impact of grain size on yielding, and hardening behavior is analyzed for several active slip systems. Finally, the implementation of partial dislocations is presented with simulation results.;Understanding dislocation dynamics is particularly important in the study of plastic deformation in small-scale crystalline structures. At micron and sub-micron scales, the study of the impact of dislocations on material properties, reliability, and failure becomes increasingly important as more and more applications emerge. At this scale, phenomena such as grain sliding, grain boundary diffusion and migration, and the interaction of dislocations with grain boundaries, obstacles, and surfaces play a prominent role in the evolution of plastic deformation. These deformation mechanisms are not accounted for in classical models that describe bulk materials and, hence, accurate deformation behavior of small components is hard to predict (Hunter and Koslowski, 2008). This 3D PFDD model seeks to fill this gap with an accurate and computationally efficient simulation tool for tracking and predicting dislocation behavior. (Abstract shortened by UMI.)
机译:晶体材料的塑性变形是由位错运动及其与缺陷(例如第二相颗粒,位错,晶界和空隙)的相互作用所介导的。此外,晶界,自由和钝化的表面对位错及其复杂结构的演变有重要影响。在多晶材料中,位错运动和相互作用的影响导致独特的机械性能,例如高屈服应力和断裂强度以及对晶粒尺寸的依赖性。可以看出,对于微米和亚微米范围内的平均晶粒尺寸,屈服应力随幂律的减小而随晶粒尺寸的减小而增加。此尺寸效果称为霍尔提取效果。描述微米级和亚微米级器件的机械响应和失效机理的可靠计算模型应考虑这些尺寸效应。;建立了三维相场位错动力学模型(3D PFDD)。这是基于位错的可塑性模型,该模型考虑了单个位错与材料缺陷和界面(例如障碍物和晶界)的运动和相互作用。该模型是有价值且有效的研究工具,将有助于在介观水平上理解塑性变形,弥合微观研究与宏观研究之间的差距。对于此处介绍的研究,该模型专门用于理解和模拟fcc(面心立方)金属薄膜中的位错行为,类似于微机电系统(MEMS)中使用的那些行为;结合了微结构,例如晶界是准确预测任何系统中变形行为的关键。塑性变形既受薄膜层厚度的影响,也受薄膜内部微结构分辨率的影响。在通常为微米级(尺寸为数百微米)的MEMS器件和组件中,内部微观结构(如晶粒尺寸,形状等)处于纳米级(范围从几十到数百纳米)( Chen等,2007; Van Swygenhoven等,1999a; Van Swygenhoven等,1999b)。在这种长度尺度上,将部分位错实现为PFDD代码对于建模正确的位错行为非常重要,因此对于准确预测性能,可靠性和寿命也很重要。研究尺寸效应是本研究的主要目标,并且已经实现通过在3D PFDD模型中表示微观结构和部分位错。这需要在以下论文中详细介绍的几个步骤,包括:对实验进行验证,以及使用分析解决方案和其他仿真工具对模型进行验证;代码并行化,可以在高性能计算资源上进行大规模仿真;以及在中尺度以上和以下的长度尺度上与模拟工具的协作和连接。;已经完成并分析了经历塑性变形的镍薄膜的模拟。讨论了并行算法的整体性能和效率,以及与解析解决方案和改进的连续谱模型的比较。此外,分析了几种活性滑移系统的晶粒尺寸对屈服和硬化行为的影响。最后,通过仿真结果给出了部分位错的实现方法。了解位错动力学在研究小尺寸晶体结构塑性变形中尤为重要。在微米和亚微米级别,随着越来越多的应用出现,对位错对材料性能,可靠性和失效的影响的研究变得越来越重要。在这种尺度下,诸如晶粒滑动,晶界扩散和迁移以及位错与晶界,障碍物和表面的相互作用等现象在塑性变形的发展中起着重要作用。在描述散装材料的经典模型中没有考虑这些变形机制,因此,很难预测小零件的精确变形行为(Hunter和Koslowski,2008)。该3D PFDD模型试图用一种精确且计算效率高的仿真工具填补这一空白,以跟踪和预测位错行为。 (摘要由UMI缩短。)

著录项

  • 作者

    Hunter, Abigail.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Computer.;Engineering Mechanical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 204 p.
  • 总页数 204
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号