首页> 外文学位 >Synthesis and characterization of polyurethane ionomers.
【24h】

Synthesis and characterization of polyurethane ionomers.

机译:聚氨酯离聚物的合成与表征。

获取原文
获取原文并翻译 | 示例

摘要

Applications such as lithium ion batteries and actuator membranes of ion-conducting polymers usually require both mechanical strength and ionic conductivity simultaneously. Throughout this thesis, PEO-based polyurethane ionomers are explored for achieving both good mechanical strength and high ionic conductivity. Polyurethane is an interesting material because it can have coexisting a mechanically strong hard phase and a fast relaxing soft phase, which can potentially have high conductivity. Anionic groups carboxylate and sulfonate are attached on the polyurethane chain either in the hard segment or soft segment to prepare single-ion conducting polyurethane ionomers that allow only cations to move under an applied electric field. Morphology, mechanical strength, ionic conductivity, thermal and dielectric properties are characterized to develop the structure-property relationships of these polyurethane ionomers.;Carboxylate-based polyurethane ionomers are prepared by using a low molar mass carboxylate diol that places the caroxylate groups in the hard segment. The effect of the counterions, from small sodium ions to large ionic liquid type counterions, is studied. It is found that with ionic groups in the hard segment, polyurethane ionomers do not microphase separate into hard and soft phases even with a 40wt% hard segment content. The glass transition temperature Tg decreases with increasing cation size because the distance between cation and anion increases and the Coulombic force decreases. The ionomers with lower Tg show a much higher ionic conductivity (up to 5 orders of magnitude) and the ionic conductivity is strongly coupled to polymer segmental relaxation. However, the modulus is also reduced because these ionomers do not microphase separate and it is also found that more than 50% of the counterions are trapped in the hard segment and never conduct.;Polyurethane ionomers with sulfonate groups in the center of the soft segment are also synthesized by placing the sulfonate between poly(ethylene glycol) (PEG) spacers. It is found that with sulfonate groups in the soft segment and long enough PEG spacer (Mw > 600), the polyurethane ionomers can microphase separate if there is more than 20wt% of hard segment, achieved by incorporating butane diol chain extender. The microphase separated ionomers are solids with modulus ∼ MPa up to 200°C. We observe a lower soft phase Tg (∼ 5°C independent of hard segment content) and higher ionic conductivity, are also detected compared to ionomers with carboxylate groups in the hard segment. The ionic conductivity is again found to strongly couple with polymer segmental relaxation. By placing the ionic groups in the soft segment, the problem of many ions being trapped in the hard segment is solved and all cations can respond to an applied electric field and contribute to ionic conductivity. Overall, the best ionomer obtained in this thesis has shear modulus of 4 MPa and ionic conductivity of 2 x 10 -5 S/cm at 150 °C.
机译:锂离子电池和离子导电聚合物的致动器膜等应用通常同时需要机械强度和离子电导率。在整个论文中,都对基于PEO的聚氨酯离聚物进行了研究,以实现良好的机械强度和高离子电导率。聚氨酯是一种令人感兴趣的材料,因为它可以同时存在机械强度高的硬相和快速松弛的软相,而软相可能具有高电导率。羧酸根和磺酸根的阴离子基团在硬链段或软链段上连接到聚氨酯链上,以制备单离子导电聚氨酯离聚物,仅允许阳离子在外加电场下移动。表征了形态,机械强度,离子电导率,热和介电性能,以发展这些聚氨酯离聚物的结构-性质关系。;基于羧酸盐的聚氨酯离聚物是通过使用低摩尔质量的羧酸酯二醇制备的,该羧酸酯二醇将羧酸根基团置于硬质分割。研究了从小钠离子到大离子液体型抗衡离子的抗衡离子的作用。发现在硬链段中具有离子基团的情况下,即使具有40wt%的硬链段含量,聚氨酯离聚物也不会微相分离成硬相和软相。玻璃化转变温度Tg随着阳离子尺寸的增加而降低,这是因为阳离子与阴离子之间的距离增加并且库仑力减小。具有较低Tg的离聚物显示出高得多的离子电导率(高达5个数量级),并且离子电导率与聚合物链段弛豫强烈耦合。但是,模量也降低了,因为这些离聚物不会发生微相分离,并且还发现超过50%的抗衡离子被困在硬链段中,并且从不导电。;在软链段中心具有磺酸盐基团的聚氨酯离聚物通过将磺酸盐置于聚(乙二醇)(PEG)间隔基之间也可以合成它们。已发现,在软链段中具有磺酸盐基团且具有足够长的PEG间隔基(Mw> 600),如果硬链段的含量超过20wt%,则聚氨酯离聚物可以微相分离,这是通过掺入丁二醇二醇扩链剂实现的。微相分离的离聚物是在200°C以下模量约为MPa的固体。我们观察到,与在硬链段中具有羧酸盐基团的离聚物相比,还检测到较低的软相Tg(约5°C,与硬链段含量无关)和较高的离子电导率。再次发现离子电导率与聚合物链段松弛强烈耦合。通过将离子基团放置在软段中,解决了许多离子被困在硬段中的问题,并且所有阳离子都可以响应施加的电场并有助于离子电导率。总体而言,本论文获得的最佳离聚物在150°C时的剪切模量为4 MPa,离子电导率为2 x 10 -5 S / cm。

著录项

  • 作者

    Wang, Shih-Wa.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Chemical.;Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号