首页> 外文学位 >Chemically Crosslinked Polymer Electrolyte Membranes from Fluorinated Liquid Precursors for Application in Fuel Cells.
【24h】

Chemically Crosslinked Polymer Electrolyte Membranes from Fluorinated Liquid Precursors for Application in Fuel Cells.

机译:氟化液态前体的化学交联聚合物电解质膜,用于燃料电池。

获取原文
获取原文并翻译 | 示例

摘要

Chemical crosslinking of polymer electrolyte membrane (PEM) liquid precursors has the ability to support variable acid loading and create intricate structures that are highly effective in suppressing methanol crossover while maintaining reasonable conductivity in PEMs for direct methanol fuel cells (DMFCs). PEM fabrication from photocuring of liquid precursors is another advantage over traditional methods of melt-processing and solvent-casting in which high cost and sophisticated equipment are employed. Linear-chain PEMs have certain shortcomings for application in DMFCs because of methanol crossover from the anode to the cathode, limited conductivity and high cost from processing steps and conditions.;In our approach, photocuring of liquid precursors produces chemically crosslinked PEMs with good mechanical strength and dimensional stability. Styrene functionalization of perfluoropolyethers diols of six different molecular weights (MWs) between 1000--4000 g mol-1 yields crosslinkers that afford crosslink density corresponding to their MWs. Copolymerization of the fluorinated liquid crosslinker and a styrene sulfonate ester comonomer via UV-light initiated free-radical bulk polymerization produces chemically crosslinked PEMs. Conversion of the ester into corresponding sulfonic acid through base/alcohol hydrolysis and ion-exchange in acid solution confers these PEMs excellent proton conductivity.;The variable crosslink density from different MWs of crosslinker provides wide window of compositions to form PEMs with ion-exchange capacity (IEC) varying from 0.5 to 1.85 meq g-1. The higher end of acid loading is two times that of benchmark Nafion membrane at good mechanical strength and dimensional stability in these crosslinked PEMs. Such high-acid loading in linear-chain PEMs leads to dissolution in polar solvents. Combining low MW (1000 g mol-1) and high MW (4000 g mol-1) crosslinkers in these PEMs improves the mechanical strength further. The fluorinated chain in crosslinked structure from perfluoropolyethers provides thermal stability up to 260°C that is sufficient for most practical applications of DMFCs.;Due to IEC of 1.85 meq g-1, these PEMs have shown conductivities of 220 to 340 mS cm-1 at 100% relative humidity and at 25 to 60°C, respectively, that are 3-fold higher than that of Nafion 117 conductivity. For methanol crossover reduction, the nature of crosslinked structure has been exploited to obtain PEMs with good methanol barrier and proton conduction properties. An objective of this research was to optimize the composition of PEMs derived from crosslinker with six different MWs and comonomer resulting in low methanol permeability and reasonable conductivity. This combination of low permeability and reasonable conductivity has resulted in the selectivity of 1.36 x 105 S cm-1/cm2 sec-1 that is more than three times that of Nafion 117 selectivity.;Depending on the crosslinker MW and composition, these crosslinked PEMs have conductivities in the range of 10-4 to 10-1 S cm-1 and methanol permeabilities in the range of 10 -9 to 10-6 cm2 sec-1. Under identical acid content, incorporation of low MW crosslinkers reduces the methanol permeability further by increasing the crosslink density. Nafion 117 has conductivity of 1.04 +/- 0.02 x 10-1 S cm -1 and methanol permeability of 2.19 +/- 0.63 x 10 -6 cm2 sec-1 in liquid water and at room temperature.;In addition to crosslinked PEMs in acidic form, photocuring of mixture of liquid precursor and 4-vinylbenzyl trimethyl chloride dissolved in a solvent (3,3,4,4,5,5,6,6,7,7,8,8,8-tridecafluoro-1-octanol) yields a novel crosslinked alkaline anion exchange membrane (AEMs). Without any optimization in composition, these crosslinked AEMs in hydroxyl form have shown good conductivity of 45 mS cm-1 in liquid water and at room temperature for IEC of 1.43 meq g-1. Analogous to crosslinked acidic PEMs, excellent opportunity exists to exploit the crosslinking approach and optimize the composition and processing condition to achieve maximum anionic ion-exchange capacity, high conductivity and low methanol permeability in these crosslinked AEMs for application in alkaline fuel cells.
机译:聚合物电解质膜(PEM)液体前体的化学交联能够支持可变的酸负载并创建复杂的结构,这些结构在抑制甲醇穿越方面非常有效,同时在直接甲醇燃料电池(DMFC)的PEM中保持合理的电导率。与液态前体的光固化相比,PEM的制造是优于传统熔体加工和溶剂浇铸方法的另一个优势,在传统方法中,采用了高成本和复杂的设备。由于甲醇从阳极到阴极的交叉,有限的电导率以及加工步骤和条件带来的高成本,线性链PEM在DMFC中具有某些缺点。在我们的方法中,液体前体的光固化产生具有良好机械强度的化学交联PEM和尺寸稳定性。六种不同分子量(MWs)在1000--4000 g mol-1之间的全氟聚醚二醇的苯乙烯官能化产生交联剂,该交联剂提供了与其分子量相对应的交联密度。氟化液体交联剂和苯乙烯磺酸酯共聚单体通过紫外光引发的自由基本体聚合进行共聚,产生化学交联的PEM。通过碱/醇水解和酸溶液中的离子交换将酯转化为相应的磺酸,使这些PEM具有优异的质子传导性;不同交联剂MW产生的可变交联密度为组合物提供了广阔的窗口,可形成具有离子交换能力的PEM (IEC)从0.5到1.85 meq g-1不等。在这些交联的PEM中,在良好的机械强度和尺寸稳定性下,酸负载的上限是基准Nafion膜的两倍。线性链PEM中如此高的酸性负载导致其在极性溶剂中的溶解。在这些PEM中结合使用低分子量(1000 g mol-1)和低分子量(4000 g mol-1)交联剂,可以进一步提高机械强度。全氟聚醚交联结构中的氟化链提供高达260°C的热稳定性,足以满足DMFC的大多数实际应用。由于1.85 meq g-1的IEC,这些PEM显示出220至340 mS cm-1的电导率分别在100%的相对湿度和25至60°C的温度下,比Nafion 117电导率高3倍。为了减少甲醇交换,已经利用交联结构的性质来获得具有良好的甲醇阻隔和质子传导性能的PEM。这项研究的目的是优化衍生自具有六种不同分子量和共聚单体的交联剂的PEM的组成,从而降低甲醇的渗透性和合理的电导率。低渗透性和合理的电导率的结合导致了1.36 x 105 S cm-1 / cm2 sec-1的选择性,是Nafion 117选择性的三倍以上;取决于交联剂的分子量和组成,这些交联的PEMs电导率范围为10-4至10-1 S cm-1,甲醇渗透率范围为10 -9至10-6 cm2 sec-1。在相同的酸含量下,低分子量交联剂的引入通过增加交联密度进一步降低了甲醇的渗透性。 Nafion 117在液态水和室温下的电导率为1.04 +/- 0.02 x 10-1 S cm -1,在甲醇中的渗透率为2.19 +/- 0.63 x 10 -6 cm2 sec-1。呈酸性形式,将液态前体与4-乙烯基苄基三甲基氯的混合物溶解在溶剂中进行光固化(3,3,4,4,5,5,6,6,7,7,8,8,8-三氟甲苯-1-辛醇)产生新型的交联碱性阴离子交换膜(AEMs)。在组成上没有任何优化的情况下,这些羟基形式的交联AEM在液态水中显示出45 mS cm-1的良好电导率,在室温下的IEC为1.43 meq g-1。与交联的酸性PEM相似,在用于碱性燃料电池的这些交联的AEM中,存在极好的机会来开发交联方法并优化组成和加工条件,以实现最大的阴离子交换能力,高电导率和低甲醇渗透性。

著录项

  • 作者

    Yadav, Rameshwar.;

  • 作者单位

    North Carolina State University.;

  • 授予单位 North Carolina State University.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 252 p.
  • 总页数 252
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号