首页> 外文学位 >Electrochemical studies on silver bimetallic cathode materials for long life batteries.
【24h】

Electrochemical studies on silver bimetallic cathode materials for long life batteries.

机译:长寿命电池用银双金属阴极材料的电化学研究。

获取原文
获取原文并翻译 | 示例

摘要

Due to the current energy crisis going across the globe, scientific community is continuously in search for alternate sources of energy. One of the potential solutions to handle this crisis situation is to look for electrical sources of energy such as batteries. Inside a battery, chemical energy is converted into electrical energy by means of an electrochemical reaction. At present, lithium batteries seem to be a good example due to their various advantages. Lithium batteries are currently being used to meet the power demands of electronics industry such as in laptops, digital cameras, and cellular devices etc. The reasons these batteries are in great demand today are high voltage of 3.6 V, high specific energy of 200 Wh/kg, and high calendar life of 10 years.;In this research work, we focused on the lithium batteries in which Silver Vanadium Oxyphosphate (SVOP-1) Ag2VO2PO4, Silver Vanadium Oxide (SVO) Ag2V4O11, acts as the cathode and lithium metal as the anode. At present, these batteries are being used in implantable cardiac defibrillators and artificial pacemakers for biomedical applications. Therefore, it becomes important to understand the proper functioning and electrochemical mechanism of these batteries. An understanding of the reduction mechanism will help us in knowing proper functioning, performance and reliability of these battery systems. We addressed this problem by first synthesizing the SVOP-1 material using reflux and hydrothermal routes. After that, the material was characterized using Brunauer Emmett and Teller (BET), scanning electron microscopy (SEM), X-ray diffraction (XRD), particle size analyzer, optical microscopy, and differential scanning calorimetry (DSC) successfully. To understand the reduction mechanism of Li-SVOP(reflux) and Li-SVOP(hydrothermal) battery systems, we calculated thermodynamic parameters such as enthalpy, entropy and Gibb's free energy of lithium intercalation. We also did thermodynamic studies on other systems such as Silver Vanadium Oxide (SVOP-3) Ag2VP2O8, Silver Hollandite Ag1.6Mn8O16 (high silver) and Silver Hollandite Ag1.07Mn8O16 (low silver). A long term storage study to understand the effect of direct current resistance (R.D.C.) and effect of ohmic, anodic, and cathodic resistances as a function of storage time was carried out. AC-Impedance technique was used to understand some of the complex electrochemical processes inside SVOP-1 system synthesized using reflux and hydrothermal routes. Effect of temperature and intermediate energy removal from these batteries (depth of discharge DOD expressed in percentage %) was also studied on the Li-SVOP battery systems using AC-Impedance technique. Activation energy (Ea, J/mol) was calculated as a function of DOD% using Arrhenius relationship from the literature.;In addition to this, we also carried out studies as a function of discharge time to understand the reduction mechanism in greater detail. We did quantification of silver using X-Ray diffraction, thick pellet sectioning, constant potential and AC-Impedance testing on Li-SVOP(reflux) battery systems. Keywords: SVOP, AC-Impedance, Depth of discharge (DOD), Implantable cardiac defibrillators (ICDs)
机译:由于当前全球范围内的能源危机,科学界一直在寻找替代能源。解决这种危机情况的潜在解决方案之一就是寻找电能来源,例如电池。在电池内部,化学能通过电化学反应转化为电能。当前,锂电池由于其各种优点而似乎是一个很好的例子。锂电池目前正用于满足笔记本电脑,数码相机和蜂窝设备等电子行业的电源需求。如今,这些电池需求量很大的原因是3.6 V的高电压,200 Wh / W的高比能。 ,寿命长达10年。;在这项研究工作中,我们重点研究了锂电池,其中氧化钒酸银(SVOP-1)Ag2VO2PO4,氧化钒银(SVO)Ag2V4O11充当正极,锂金属作为阳极。目前,这些电池正在用于生物医学应用的植入式心脏除颤器和人工起搏器中。因此,了解这些电池的正常功能和电化学机理变得很重要。了解减速机制将有助于我们了解这些电池系统的正常功能,性能和可靠性。通过首先使用回流和水热途径​​合成SVOP-1材料,我们解决了这个问题。此后,成功使用Brunauer Emmett和Teller(BET),扫描电子显微镜(SEM),X射线衍射(XRD),粒度分析仪,光学显微镜和差示扫描量热法(DSC)对材料进行了表征。为了了解Li-SVOP(回流)和Li-SVOP(水热)电池系统的还原机理,我们计算了热力学参数,如焓,熵和吉布的锂嵌入自由能。我们还对其他系统进行了热力学研究,例如氧化钒银(SVOP-3)Ag2VP2O8,银河Holland石Ag1.6Mn8O16(高银)和银河Holland石Ag1.07Mn8O16(低银)。进行了长期存储研究,以了解直流电阻(R.D.C.)的影响以及欧姆,阳极和阴极电阻随存储时间的变化。使用交流阻抗技术了解了使用回流和水热途径​​合成的SVOP-1系统内部的一些复杂电化学过程。还使用交流阻抗技术在Li-SVOP电池系统上研究了温度和中间能量从这些电池中去除的影响(放电深度DOD以百分比表示)。使用文献中的Arrhenius关系式计算活化能(Ea,J / mol)作为DOD%的函数。此外,我们还进行了放电时间函数的研究,以更详细地了解还原机理。我们在Li-SVOP(回流)电池系统上使用X射线衍射,厚颗粒切片,恒定电势和交流阻抗测试对银进行了定量。关键字:SVOP,交流阻抗,放电深度(DOD),植入式心脏除颤器(ICD)

著录项

  • 作者

    Sharma, Munish Kumar.;

  • 作者单位

    State University of New York at Buffalo.;

  • 授予单位 State University of New York at Buffalo.;
  • 学科 Engineering Chemical.;Energy.;Engineering Materials Science.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2011
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号