首页> 外文学位 >Modeling large three-dimensional stress reversals in cross-anisotropic sands.
【24h】

Modeling large three-dimensional stress reversals in cross-anisotropic sands.

机译:建模各向异性砂中的大型三维应力逆转。

获取原文
获取原文并翻译 | 示例

摘要

A kinematic hardening mechanism has previously been proposed to capture the behavior of soil during large stress reversals in the triaxial plane. This mechanism is modified and extended into principal stress space. It incorporates rotation and intersection of yield surfaces to produce plastic strains within the original isotropic yield locus. An existing elasto-plastic model with isotropic hardening is used as the basic framework. The new combined model preserves the behavior of the isotropic hardening model under monotonic loading conditions, and the extension from isotropic to rotational kinematic hardening under three-dimensional conditions is accomplished without introducing new material parameters.; The kinematic hardening model was developed on the assumption of isotropic behavior of soil. However, most of the geomaterials are affected by anisotropy. To enable more accurate predictions the effects of inherent anisotropy must be taken into account in the modeling formulations.; A constitutive model has been developed to capture the behavior of cross-anisotropic frictional materials. The isotropic Single Hardening Model serves as the basic framework for this model. Based on the experimental results of cross-anisotropic sands in isotropic compression tests, the principal stress coordinate system is rotated such that the model operates isotropically within the rotated framework. The initial rotation angle of the yield and plastic potential surfaces is related to the degree of initial inherent anisotropy measured in the isotropic compression test. The amount of rotation of the yield and plastic potential surfaces decreases from the initial value back to zero kisotropic state) with loading. The model incorporates thirteen parameters that can be determined from isotropic compression, drained triaxial compression and extension tests.; The cross-anisotropic model is verified by comparing the predictions with a series of true triaxial compression tests performed on dense Santa Monica Beach sand. Then the cross-anisotropic model employed with the rotational kinematic hardening mechanisms is verified by predicting true triaxial tests incorporating large three-dimensional stress reversals performed on Santa Monica Beach sand. The model is shown to capture the overall trends of the observed behavior of cross-anisotropic sands during large three-dimensional stress reversals with reasonably good accuracy within the scatter of the test results.
机译:先前已经提出了一种运动硬化机制来捕获三轴平面中大的应力逆转过程中的土壤行为。该机制已修改并扩展到主应力空间。它结合了屈服面的旋转和相交,以在原始的各向同性屈服点内产生塑性应变。现有的具有各向同性强化的弹塑性模型被用作基本框架。新的组合模型在单调加载条件下保留了各向同性硬化模型的行为,并且在三维条件下完成了从各向同性到旋转运动硬化的扩展,而没有引入新的材料参数。运动硬化模型是在假设土壤各向同性的基础上建立的。但是,大多数土工材料都受到各向异性的影响。为了能够进行更准确的预测,必须在建模公式中考虑固有各向异性的影响。本构模型已经开发出来,以捕获交叉各向异性摩擦材料的行为。各向同性的单硬化模型是该模型的基本框架。根据横观各向同性砂土在各向同性压缩试验中的实验结果,旋转主应力坐标系,以使模型在旋转框架内各向同性地运行。屈服面和塑性势面的初始旋转角与各向同性压缩试验中测得的初始固有各向异性程度有关。屈服面和塑性势面的旋转量随载荷从初始值减小到零等向性状态。该模型包含了13个参数,这些参数可以通过各向同性压缩,排水三轴压缩和延伸试验确定。通过将预测结果与在致密的圣莫尼卡海滩沙子上进行的一系列真实三轴压缩测试进行比较,验证了横观各向异性模型。然后,通过预测真实的三轴试验并结合在圣莫尼卡海滩沙子上进行的大三维应力逆转,验证了与旋转运动硬化机制一起使用的横观各向异性模型。该模型显示了在较大的三维应力逆转过程中以相当好的精度在测试结果范围内捕获了横观各向异性砂行为的总体趋势。

著录项

  • 作者

    Gutta, Suresh Kumar.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Engineering Civil.; Geotechnology.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.3948
  • 总页数 308
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 建筑科学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号