首页> 外文学位 >Ultrafast protein hydration dynamics probed by intrinsic tryptophan .
【24h】

Ultrafast protein hydration dynamics probed by intrinsic tryptophan .

机译:固有色氨酸探测超快蛋白质水化动力学。

获取原文
获取原文并翻译 | 示例

摘要

Elucidation of water-protein interactions and dynamics is essential to the understanding of protein structure, dynamics and function. In this dissertation, we describe a novel methodology developed in our lab to probe the dynamics of water-protein interactions. The natural amino acid tryptophan is employed as an intrinsic optical probe. By integrating site-directed mutagenesis and state-of-the-art femtosecond laser spectroscopy, we are able to monitor the Stokes shift of tryptophan at any specific positions in proteins, one at a time, and the local hydration dynamics around tryptophan can be precisely determined. This dissertation presents several important protein systems we have investigated with this method. These include the membrane protein melittin, drug delivery protein human serum albumin, and the "hydrogen atom" of modern molecular biology, (apo)myoglobin. These protein systems have very different structures and biological functions. However, a robust double exponential hydration dynamics were observed in all these proteins, which represent two types of water relaxation processes. The first timescale is in several picoseconds and results from the initial local collective water network relaxation mainly through libration motions. The second time scale is in tens to hundreds of picoseconds and results from lateral hydration layer restructuring. The second process is strongly coupled with protein structure fluctuations and dynamic exchange between protein hydration water and bulk water. Both time scales are strongly correlated with protein architecture, such as secondary and tertiary structures, neighboring chemical identities, and protein structural flexibilities. These correlations were first evident in the systems of melittin and human serum albumin. Dynamics of hydration water gradually slows down as the melittin structure changes from random coil to alpha-helix to tetramer. While in human serum albumin, solvation dynamics change consistently during protein conformational transitions between multiple functional states. Then these correlations between hydration dynamics and protein properties were investigated in great detail in the protein apomyoglobin. Sixteen tryptophanyl mutants were designed to scan the protein surface. These tryptophans cover very different local protein environments, such as different secondary structures of loop or alpha-helix and different neighboring charged residue distributions. By changing pH to bring the protein to a folded native or a partially folded molten globular state, we were also able to investigate the global transitions of hydration dynamics during protein folding. The results provide clear and rich information of distinct behaviors of hydration water around various protein environments, revealing that hydration water is an integral part of proteins and directly "controls" their structure, dynamics and function.
机译:阐明水-蛋白质相互作用和动力学对理解蛋白质结构,动力学和功能至关重要。在本文中,我们描述了一种在实验室中开发的新颖方法,以探讨水-蛋白质相互作用的动力学。天然氨基酸色氨酸用作本征光学探针。通过整合定点诱变和先进的飞秒激光光谱技术,我们能够一次监测蛋白质中任何特定位置的色氨酸的斯托克斯位移,并且可以精确地围绕色氨酸进行局部水合作用决心。本文提出了几种重要的蛋白质系统,我们已经用这种方法进行了研究。这些包括膜蛋白蜂毒素,药物递送蛋白人血清白蛋白,以及现代分子生物学中的“氢原子”(载脂蛋白)肌红蛋白。这些蛋白质系统具有非常不同的结构和生物学功能。但是,在所有这些蛋白质中均观察到了强大的双指数水合动力学,代表了两种类型的水松弛过程。最初的时标是几皮秒,主要来自解放运动,最初是由于当地集体水网松弛造成的。第二个时间尺度是数十到数百皮秒,是横向水化层重组的结果。第二个过程与蛋白质结构波动以及蛋白质水合水和散装水之间的动态交换密切相关。两种时间尺度都与蛋白质结构密切相关,例如二级和三级结构,邻近的化学特性以及蛋白质结构的灵活性。这些相关性首先在蜂毒肽和人血清白蛋白系统中得到证实。随着蜂毒肽结构从无规卷曲变为α-螺旋到四聚体,水合水的动力学逐渐变慢。当在人血清白蛋白中时,在多个功能状态之间的蛋白质构象转变期间,溶剂化动力学持续变化。然后,在蛋白质apglooglobin中详细研究了水合动力学与蛋白质特性之间的这些相关性。设计了十六个色氨酸突变体以扫描蛋白质表面。这些色氨酸覆盖非常不同的局部蛋白质环境,例如不同的环或α-螺旋二级结构以及不同的邻近带电残基分布。通过改变pH值使蛋白质变成折叠的天然或部分折叠的熔融球状状态,我们还能够研究蛋白质折叠过程中水合动力学的整体转变。结果提供了清晰和丰富的信息,说明水合水在各种蛋白质环境中的不同行为,表明水合水是蛋白质的组成部分,可以直接“控制”其结构,动力学和功能。

著录项

  • 作者

    Zhang, Luyuan.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 202 p.
  • 总页数 202
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号