首页> 外文学位 >Asymptotic similarity in turbulent boundary layers.
【24h】

Asymptotic similarity in turbulent boundary layers.

机译:湍流边界层中的渐近相似性。

获取原文
获取原文并翻译 | 示例

摘要

The turbulent boundary layer is one of the most fundamental and important applications of fluid mechanics. Despite great practical interest and its direct impact on frictional drag among its many important consequences, no theory absent of significant inference or assumption exists. Numerical simulations and empirical guidance are used to produce models and adequate predictions, but even minor improvements in modeling parameters or physical understanding could translate into significant improvements in the efficiency of aerodynamic and hydrodynamic vehicles.;Classically, turbulent boundary layers and fully-developed turbulent channels and pipes are considered members of the same "family," with similar "inner" versus "outer" descriptions. However, recent advances in experiments, simulations, and data processing have questioned this, and, as a result, their fundamental physics.;To address a full range of pressure gradient boundary layers, a new approach to the governing equations and physical description of wall-bounded flows is formulated, using a two variable similarity approach and many of the tools of the classical method with slight but significant variations. A new set of similarity requirements for the characteristic scales of the problem is found, and when these requirements are applied to the classical "inner" and "outer" scales, a "similarity map" is developed providing a clear prediction of what flow conditions should result in self-similar forms. An empirical model with a small number of parameters and a form reminiscent of Coles' "wall plus wake" is developed for the streamwise Reynolds stress, and shown to fit experimental and numerical data from a number of turbulent boundary layers as well as other wall-bounded flows. It appears from this model and its scaling using the free-stream velocity that the true asymptotic form of u'2 may not become self-evident until Retheta ≈ 275,000 or delta+ ≈ 105, if not higher. A perturbation expansion made possible by the novel inclusion of the scaled streamwise coordinate is used to make an excellent prediction of the shear Reynolds stress in zero pressure gradient boundary layers and channel flows, requiring only a streamwise mean velocity profile and the new similarity map. Extension to other flows is promising, though more information about the normal Reynolds stresses is needed. This expansion is further used to infer a three layer structure in the turbulent boundary layer, and modified two layer structure in fully-developed flows, by using the classical inner and logarithmic profiles to determine which portions of the boundary layer are dominated by viscosity, inertia, or turbulence. A new inner function for U+ is developed, based on the three layer description, providing a much more simplified representative form of the streamwise mean velocity nearest the wall.
机译:湍流边界层是流体力学最基本,最重要的应用之一。尽管有很大的实际意义,并且它对摩擦阻力有直接影响,但它有许多重要的后果,但不存在缺乏重大推论或假设的理论。数值模拟和经验指导可用于产生模型和适当的预测,但是即使建模参数或物理理解上的微小改进也可以转化为空气动力学和流体力学车辆效率的显着提高。;典型地,湍流边界层和充分开发的湍流通道“管道”和“管道”被视为同一“系列”的成员,并且具有类似的“内部”与“外部”描述。然而,最近在实验,模拟和数据处理方面的进展对此提出了质疑,并因此对其基本物理学提出了质疑。为了解决压力梯度边界层的所有范围,一种新的控制方程和壁物理描述方法使用两个变量的相似性方法和经典方法的许多工具(略有但明显的变化)来制定边界流。找到了针对问题特征量表的一组新的相似性要求,并将这些要求应用于经典的“内部”和“外部”标度时,将开发“相似度图”,以提供对应确定何种流动条件的清晰预测导致自我相似的形式。针对流向雷诺应力,开发了具有少量参数和形式让人联想起Coles的“壁加尾流”形式的经验模型,并显示了该模型可拟合来自许多湍流边界层以及其他壁的实验和数值数据。有限的流量。从该模型及其使用自由流速度的缩放来看,直到Retheta≈直到u'2的真正渐近形式才可能变得不言自明。 275,000或delta +≈ 105,如果不更高。通过新颖地包含比例缩放的流向坐标,可能产生的摄动扩展用于对零压力梯度边界层和通道流中的剪切雷诺应力进行出色的预测,仅需要流向平均速度曲线和新的相似度图即可。尽管需要更多有关正常雷诺应力的信息,但扩展到其他流量是有希望的。通过使用经典的内部和对数分布图确定边界层的哪些部分受粘度,惯性支配,此扩展还用于推断湍流边界层中的三层结构,并在完全展开的流中修改两层结构。或湍流。基于三层描述,为U +开发了一个新的内部函数,它提供了最简化的代表最接近壁的流向平均速度的形式。

著录项

  • 作者

    Duncan, Richard D.;

  • 作者单位

    Illinois Institute of Technology.;

  • 授予单位 Illinois Institute of Technology.;
  • 学科 Engineering Aerospace.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 213 p.
  • 总页数 213
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号