首页> 外文学位 >Three dimensional critical wetting experiment in commercial zero-gravity space flight.
【24h】

Three dimensional critical wetting experiment in commercial zero-gravity space flight.

机译:商业零重力空间飞行中的三维临界润湿实验。

获取原文
获取原文并翻译 | 示例

摘要

Without gravity, fluids behave differently and present challenges not observed on Earth. As a result, an understanding of microgravity fluid physics is essential in the development of many space technologies ranging from life support systems on the International Space Station to propellant management devices in spacecraft fuel tanks. Microgravity fluids research has been conducted for decades in drop towers, parabolic aircraft, sounding rockets, the Space Shuttle, and the International Space Station. Recently, flight opportunities for microgravity research experiments are becoming available on commercial suborbital vehicles. Advantages of commercial suborbital space flight include low-cost access to the microgravity environment, multiple launch opportunities in a single day, access to experimental hardware up to minutes before launch, and access to experimental data immediately upon landing. In addition, the initial development of many commercial suborbital vehicles was largely for space tourism meaning that safety requirements for manned missions are in place making autonomous control unnecessary and allowing hands-on experimentation during flight. Suborbital space flights also provide significantly more low-gravity time (approximately 3 to 5 minutes) compared to current drop towers.;The emerging market for microgravity research in commercial suborbital space-flight has provided an opportunity to explore critical wetting in a three-dimensional geometry. This thesis discusses the design of a microgravity experiment scheduled to launch on New Shepard vehicle designed by Blue Origin, LLC. The experiment includes a 5-inch diameter spherical tank and two rotating vane structures of different thicknesses The design of the tank and vane structures was completed using the Surface Evolverwhich is a computational tool used to model steady-state low-gravity capillary fluids problems. The critical wetting phenomenon in the gap between the vane and the tank wall was studied.;The results obtained from Surface Evolver conclude that the capillary behavior of the liquid in the gap is significantly affected by differences in vane thickness, vane width, contact angle, and the non-circular shape of the vane, or vane spiral. Decreasing the thickness of only one vane reduces the liquid climb height in the vane gap of the thinner vane while the liquid climb height increases in the vane gap of the thicker vane. The same result is observed when the vane width is decreased. Increasing the contact angle increases the liquid climb height in the thick vane gap and decreases the liquid climb height in the thin vane gap for vane angles less than 10°. Lastly, increasing the vane gap by increasing the vane spiral causes the liquid climb height in the thick vane gap to decrease while the liquid climb height in the thin vane gap closely follows the baseline until about 10°.;The final vane design was chosen based on the conclusions of this work. The thicker vane has a thickness of 0.1, the thinner vane has a thickness of 0.05, and both vanes have a width of 0.2. The vane thicknesses and width are nondimensionalized by the radius of the tank. The vane spiral rate was chosen to be 0.01 rad, the contact angle of the test fluid was determined to be 40° and 25% is the chosen volume fill fraction.;Future work for this experiments includes the launch of the experimental hardware on Blue Origin's New Shepard vehicle. Observations of the capillary behavior of the liquid will be recorded via video cameras, and conclusions from the experimental data will be compared to the numerical results presented in this thesis.
机译:没有重力,流体的行为会有所不同,并带来地球上未见的挑战。结果,对微重力流体物理学的理解对于许多航天技术的发展至关重要,从国际空间站上的生命支持系统到航天器燃料箱中的推进剂管理装置,应运而生。微重力流体的研究已经在下落塔,抛物线飞机,探空火箭,航天飞机和国际空间站进行了数十年。近来,用于微重力研究实验的飞行机会在商用亚轨道飞行器上变得可用。商业亚轨道太空飞行的优势包括低成本进入微重力环境,一天之内有多次发射机会,在发射前几分钟即可访问实验硬件以及在着陆后立即访问实验数据。此外,许多商用亚轨道飞行器的最初开发主要是为了太空旅游,这意味着有人飞行任务的安全要求已经到位,从而使自动控制变得不必要,并允许在飞行过程中进行动手实验。与目前的下落塔相比,亚轨道太空飞行还提供了更多的低重力时间(约3至5分钟)。新兴的商业亚轨道太空飞行微重力研究市场为探索3维关键润湿提供了机会。几何。本文讨论了计划在Blue Origin,LLC设计的New Shepard车辆上启动的微重力实验的设计。该实验包括一个直径为5英寸的球形储罐和两个不同厚度的旋转叶片结构。使用“表面演化器”完成了储罐和叶片结构的设计,这是一种用于对稳态低重力毛细管流体问题进行建模的计算工具。研究了叶片与罐壁之间间隙中的临界润湿现象。;从Surface Evolver获得的结果得出结论,间隙中液体的毛细管行为受叶片厚度,叶片宽度,接触角,叶片的非圆形形状,或叶片螺旋形。仅减小一个叶片的厚度将减小较薄叶片的叶片间隙中的液体爬升高度,而增加较厚叶片的叶片间隙中的液体爬升高度。当叶片宽度减小时,观察到相同的结果。对于小于10°的叶片角,增加接触角会增加在较厚叶片间隙中的液体爬升高度,并会减小在较薄叶片间隙中的液体爬升高度。最后,通过增加叶片螺旋来增加叶片间隙会导致厚叶片间隙中的液体爬升高度降低,而薄叶片间隙中的液体爬升高度紧随基线直到大约10°.;根据最终叶片设计选择根据这项工作的结论。较厚的叶片厚度为0.1,较薄的叶片厚度为0.05,两个叶片的宽度均为0.2。叶片的厚度和宽度不受罐半径的影响。选择叶片螺旋速率为0.01 rad,确定测试流体的接触角为40°,选择的体积填充分数为25%。;该实验的未来工作包括在Blue Origin的产品上启动实验硬件新的谢泼德车。液体的毛细行为的观察将通过摄像机记录下来,并将实验数据的结论与本文提出的数值结果进行比较。

著录项

  • 作者

    Sharp, Lauren M.;

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Aerospace.
  • 学位 M.S.E.
  • 年度 2011
  • 页码 106 p.
  • 总页数 106
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号