首页> 外文学位 >Studies of Air Dehydration by Using Hollow Fiber Modules.
【24h】

Studies of Air Dehydration by Using Hollow Fiber Modules.

机译:使用中空纤维组件进行空气脱水的研究。

获取原文
获取原文并翻译 | 示例

摘要

Hollow fiber membrane module is widely used for commercial gas separation, such as production of high purity of nitrogen and enriched oxygen gas from air, carbon dioxide removal from methane, carbon dioxide sequestration from flue gas and hydrogen purification. Membrane gas separation for air dehydration (AD) differs from other commercial applications in several ways. First, the component to be removed (water) possesses a permeability that may be more than three orders of magnitude greater than the other components in the feed (oxygen and nitrogen). Second, the feed concentration is small, less than 1% in a molar basis. Third, the product concentration may be two orders of magnitude less than the feed concentration. This work seeks to study the hollow fiber gas separation modules for air dehydration.;The work evaluated potential module performance and the effect of the inefficiencies such as fiber property variability and deviation from ideal counter-current contacting.;This research investigated the effect of sweep uniformity on gas dehydration module performance by assuming the sweep around each fiber is Gaussian sweep distribution. In addition, this work explicitly calculated sweep distribution and presented the effect of sweep distribution, effect of fiber packing variation along case. Compared to fiber size variation, non-uniform sweep distribution has little effect on module performance.;Moreover, two fundamental issues for gas separation regarding the Hagen-Poiseuille law and boundary layer contributions on mass transfer coefficients were investigated.;This works investigated the of the Hagen-Poiseuille law for pressure drop calculations in hollow fiber gas separation modules. In this work a two dimensional (2D) computational fluid dynamics (CFD) mathematical modeling was used to obtain the numerical approximations to the solutions of the conservation of mass and momentum equations in a single fiber that is assumed to be representative of all fibers in the fiber bundle. Hagen-Poiseuille law is a good approximate solution of pressure drop for sufficiently low Reynolds number of the feed and permeation fraction for compressible flows.;For gas separations, concentration polarization can be significant when the fast gas permeance is greater than 1000 GPU. For air dehydration modules, the overall mass transfer coefficient is calculated by summing the lumen-side, membrane, and shell-side mass transfer resistances. In this work, effective mass transfer coefficients in the lumen and shell are calculated by using computational fluid dynamics (CFD) method and analytical method. The solutions will be obtained for a single fiber that is assumed to be representative of all fibers in the fiber bundle. The lumen mass transfer coefficient for constant wall permeance is 20% greater than that for constant wall concentration. The shell mass transfer coefficient in this research is 2–3 orders magnitude greater than the Donahue equation and the differences may arise from the complexity geometry of the shell fibers and the flows within it.;A commercial air dehydration hollow fiber module was evaluated. The module properties were obtained from experiment. Experimental results are in good agreement in simulation results-sweep increases product flow rate significantly.
机译:中空纤维膜组件广泛用于商业气体分离,例如从空气中生产高纯度的氮气和富集的氧气,甲烷中的二氧化碳去除,烟气中的二氧化碳隔离和氢气净化。用于空气脱水(AD)的膜气分离与其他商业应用在几个方面有所不同。首先,要去除的组分(水)的渗透率可能比进料中的其他组分(氧气和氮气)大三个数量级。其次,进料浓度小,以摩尔计小于1%。第三,产物浓度可以比进料浓度小两个数量级。这项工作旨在研究用于空气脱水的中空纤维气体分离模块。这项工作评估了潜在的模块性能以及效率低下的影响,例如纤维性质的变化和偏离理想逆流接触的影响。通过假设每根光纤周围的扫描为高斯扫描分布,可以得出气体脱水模块性能的均匀性。此外,这项工作还明确计算了扫掠分布,并给出了扫掠分布的影响,纤维堆积随情况变化的影响。相较于纤维尺寸的变化,不均匀的扫描分布对组件的性能影响不大。此外,研究了关于气体分离的两个基本问题,涉及哈根-泊厄依定律和边界层对传质系数的影响。 Hagen-Poiseuille定律用于中空纤维气体分离模块中的压降计算。在这项工作中,使用二维(2D)计算流体动力学(CFD)数学模型来获得单纤维中质量和动量方程守恒方程解的数值近似值,假设该方程可以代表纤维中的所有纤维。纤维束。对于足够低的进料雷诺数和可压缩流的渗透率,哈根-泊苏律定律是一个很好的压降近似解。对于快速分离的气体,当气体的渗透率大于1000 GPU时,气体的分离,浓差极化会很明显。对于空气脱水模块,总的传质系数是通过将管腔侧,膜和壳侧的传质阻力相加得出的。在这项工作中,通过使用计算流体动力学(CFD)方法和分析方法来计算管腔和壳体中的有效传质系数。对于假定代表纤维束中所有纤维的单根纤维,将获得解决方案。恒定壁渗透性的流明传质系数比恒定壁渗透性的流明传质系数大20%。在这项研究中,壳的传质系数比Donahue方程大2–3个数量级,其差异可能是由于壳纤维的复杂几何形状及其中的流动所致。;对商用空气脱水中空纤维组件进行了评估。模块性能是从实验中获得的。实验结果与模拟结果吻合良好-扫掠可显着提高产品流速。

著录项

  • 作者

    Hao, Pingjiao.;

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 142 p.
  • 总页数 142
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号