首页> 外文学位 >Spatial light interference microscopy and applications.
【24h】

Spatial light interference microscopy and applications.

机译:空间光干涉显微镜及其应用。

获取原文
获取原文并翻译 | 示例

摘要

Phase contrast microscopy has revolutionized cell biology by rendering detailed images from within live cells without using exogenous contrast agents. However, the information about the optical thickness (or phase) is qualitatively mixed in the phase contrast intensity map. Quantifying optical path-length shifts across the specimen offers a new dimension to imaging, which reports on both the refractive index and thickness distribution with very high accuracy. Here I present spatial light interference microscopy (SLIM), a new optical method, capable of measuring optical path-length changes of 0.3 nm spatially (i.e. point to point change) and 0.03 nm temporally (i.e. frame to frame change). SLIM combines two classic ideas in light imaging: Zernike’s phase contrast microscopy and Gabor’s holography. The resulting topographic accuracy is comparable to that of atomic force microscopy, while the acquisition speed is 1,000 times higher.;I exploit these features and demonstrate SLIM’s ability to measure the topography of a single atomic layer of graphene. Using a decoupling procedure for cylindrical structures, I extract the axially-averaged refractive index of semiconductor nanotubes and neurites of a live hippocampal neuron in culture. Owing to its low noise and temporal stability, SLIM enables nanometer-scale cell dynamics. Further, the linear relationship between the cell phase shift and its dry mass enables cell growth measurements in mammalian cells. The SLIM/fluorescence multimodal imaging allows for cell cycle dependent growth measurement, revealing that the G2 phase exhibits the highest growth rate and an exponential trend. Due to the micron-scale coherence length of the illuminating field, SLIM provides high axial resolution optical sectioning. Based on a 3D complex field deconvolution operation, tomographic refractive index distributions of live, unstained cells are obtained.;Further, the optical field is numerically propagated to the far-zone and the scattering properties of tissue and cells have been studied. A scattering phase theorem was developed to bridge the gap between scattering and imaging. Other optical degrees of freedom associated with the sample, such as polarization measurement, are also demonstrated.;Finally, SLIM renders the refractive index map of unstained histopathology slides to a quantitative color-coded image which is further proved to report onsite the carcinomas for prostate biopsies and calcifications for breast biopsies. The imaging signatures of SLIM report different properties of the tissue and cells compared to the gold standard of stained histopathology, which relies on a subjective practice and is sensitive to variations in the fixation and staining processes. The spatial correlations of refractive index indicate that cancer progression significantly alters the tissue organization. In particular, tissue refractive index exhibits consistently higher variance in prostate tumors than in normal regions. From the refractive index maps, I further obtained the spatially resolved scattering mean free path and demonstrated its direct correlation with tumor presence. I also studied small intestine tissue with amyloid and tonsil tissue with actinomyces. The results show that refractive index is an intrinsic marker for cancer diagnosis.
机译:相衬显微镜技术通过不使用外源性造影剂即可从活细胞内绘制详细图像,彻底改变了细胞生物学。但是,有关光学厚度(或相位)的信息在相位对比强度图中定性混合。量化整个样本的光程长度偏移为成像提供了新的维度,可以非常高精度地报告折射率和厚度分布。在这里,我介绍了一种空间光学干涉显微镜(SLIM),这是一种新的光学方法,能够测量空间(即点对点变化)为0.3 nm和时间(即逐帧变化)为0.03 nm的光程长度变化。 SLIM结合了光成像的两个经典概念:Zernike的相衬显微镜和Gabor全息术。所得到的形貌精度可与原子力显微镜相媲美,而采集速度却要高出1,000倍。我利用这些功能并证明了SLIM能够测量石墨烯单原子层的形貌。使用圆柱结构的解耦程序,我提取了培养物中活体海马神经元的半导体纳米管和神经突的轴向平均折射率。由于其低噪声和时间稳定性,SLIM可以实现纳米级的电池动力学。此外,细胞相移与其干重之间的线性关系使得能够测量哺乳动物细胞中的细胞生长。 SLIM /荧光多模态成像可进行细胞周期依赖性生长测量,揭示G2期显示出最高的生长速率和指数趋势。由于照明场的微米级相干长度,SLIM提供了高轴向分辨率的光学切片。基于3D复数场反卷积运算,获得了未染色的活细胞的X射线断层扫描折射率分布。此外,光场在数值上传播到了远区,并研究了组织和细胞的散射特性。提出了散射相位定理,以弥合散射和成像之间的差距。最后,还证明了与样品有关的其他光学自由度,例如偏振测量。最后,SLIM将未染色的组织病理学玻片的折射率图呈现为定量的彩色编码图像,该图像进一步被证明可现场报告前列腺癌乳房活检的活检和钙化。与染色组织病理学的金标准相比,SLIM的成像特征报告了组织和细胞的不同特性,这依赖于主观实践,并且对固定和染色过程的变化敏感。折射率的空间相关性表明,癌症的进展会显着改变组织的组织。特别是,组织折射率在前列腺肿瘤中表现出比正常区域一致更高的变化。从折射率图,我进一步获得了空间分辨的散射平均自由程,并证明了其与肿瘤的存在直接相关。我还研究了淀粉样蛋白的小肠组织和放线菌的扁桃体组织。结果表明,折射率是癌症诊断的内在标志。

著录项

  • 作者

    Wang, Zhuo.;

  • 作者单位

    University of Illinois at Urbana-Champaign.;

  • 授予单位 University of Illinois at Urbana-Champaign.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号