首页> 外文学位 >Design and analysis of heterogeneous networks for chip-multiprocessors.
【24h】

Design and analysis of heterogeneous networks for chip-multiprocessors.

机译:芯片多处理器异构网络的设计和分析。

获取原文
获取原文并翻译 | 示例

摘要

Rarely has there been as challenging and exciting a time for research in computer architecture as now. While, the proverbial Moore's law has consistently helped architects integrate more and more silicon transistors in a single die, device constraints of power, heat, and reliability has forced the computer industry to shift focus from single processor core performance to instantiating multiple processor cores on a chip. In this quest for integrating a large number of cores on a single chip, one particular area of computer architecture that has come into prominence is the interconnection network on a chip (also called network-on-chip or NoC). NoCs seek to provide a scalable, energy-efficient and high-bandwidth communication substrate for future multi-core and many-core architectures---an aspect that critically dictates future chip designs.;Most of the prior research in NoC has focussed on optimizing the NoC considering it as a homogeneous system i.e. all optimizations proposed, equally affect all the components in the NoC substrate. However, this dissertation demonstrates that the resources in the NoC (precisely, buffers and links) are not always equally utilized, and that not all applications demand similar resources from the underlying interconnection substrate. Hence, this dissertation argues that better and smarter NoCs can be architected by considering the inherent heterogeneity in NoCs from both the network architecture perspective and from the applications' perspective. Further, considering the fact that future multicores and systems-on-chip architectures will have heterogeneous cores and compute engines, and host diverse applications, it is also inevitable that not all components will demand similar responses from the NoC and neither will these compute engines stress the NoC uniformly. Thus, it is compelling to think of heterogeneous NoCs for such heterogeneous systems. To this end, this dissertation argues in favor of NoCs that factor heterogeneity as a first-order design objective while architecting them for future multi-core systems.;In this pursuit, this dissertation investigates micro-architectural techniques that exploit heterogeneity at the network resource consumption level (following a bottom-up approach) and from applications' demand/requirement perspective (following a top-down approach). With the bottom-up approach, heterogeneity is exploited with the key observation that not all resources in an NoC are equally utilized when employing a typical network topology and a network routing protocol. With the top-down approach, heterogeneity is exploited starting from the applications' demand perspective with the key observation that not all applications require similar resources from the underlying network substrate. Based on these two approaches, this dissertation proposes four techniques with the overall goal of designing high-performance and energy-efficient NoCs.;The first scheme, called Router Architecture with Frequency Tuning (RAFT), exploits heterogeneity in the buffers of the on-chip routers and proposes a variable- frequency scheme to operate them. This design is the first of its kind to propose a distributed congestion management scheme that is based on operating individual routers at different frequency levels. The second scheme, called HeteroNoC, targets non-uniformity in both buffers and links in the on-chip networks. Using the same amount of link resources and fewer buffer resources compared to a homogeneous network, this proposal demonstrates that a carefully designed heterogeneous network can reduce average latency, improve network throughput and reduce power. The third scheme, argues in favor of designing on-chip networks by taking into account the intrinsic communication requirements of applications. This proposal is based on the observation that, in general, applications can be classified as either network bandwidth sensitive or latency sensitive. Based on this, the proposal consists of two separate heterogeneous networks in the on-chip interconnection substrate, where one network is tailored to optimize for bandwidth sensitive applications and the second network for latency sensitive applications. The fourth scheme presented in this dissertation targets heterogeneity in device technology for improving the memory subsystem performance of multi-cores. This scheme leverages the advantages of an emerging memory technology that is based on spintronics, called spin torque transfer RAM (STT-RAM), for memory subsystem design. STT-RAM can be heterogeneously integrated onto silicon and this proposal argues in favor of designing the NoC in a way that is cognizant of the presence of STT-RAM cache banks.;This dissertation investigates each of the above proposals at depth and shows that the proposed schemes have minimal overheads in terms of area and power, are simple to implement, and show significant benefits with real applications. Overall, this dissertation makes a strong case for designing heterogeneous networks for improving the performance-power envelope of future multicore processors.
机译:与现在相比,在计算机体系结构研究领域几乎没有一个充满挑战和令人兴奋的时代。虽然众所周知的摩尔定律一直在帮助架构师将越来越多的硅晶体管集成到单个裸片中,但器件对功率,热量和可靠性的限制迫使计算机行业将重点从单处理器内核性能转移到实例化一个处理器上的多个处理器内核。芯片。为了在单个芯片上集成大量内核,计算机体系结构的一个特定领域已引起关注,那就是芯片上的互连网络(也称为片上网络或NoC)。 NoC寻求为未来的多核和多核架构提供可扩展的,高能效的,高带宽的通信基板,这一方面至关重要地决定着未来的芯片设计。NoC的先前研究大多集中在优化NoC将其视为同质系统,即提出的所有优化措施均会影响NoC基材中的所有组件。但是,本文证明,NoC中的资源(准确地说是缓冲区和链接)并非总是被平等地利用,并且并非所有应用程序都需要底层互连基板提供类似的资源。因此,本文认为,可以通过从网络架构和应用程序两个角度考虑NoC固有的异构性来构建更好,更智能的NoC。此外,考虑到未来的多核和片上系统架构将具有异构内核和计算引擎并托管各种应用程序这一事实,因此不可避免的是,并非所有组件都需要来自NoC的类似响应,并且这些计算引擎也不会承受任何压力。 NoC统一。因此,必须考虑为此类异构系统使用异构NoC。为此,本文主张采用NoC,而NoC将异构性作为一阶设计目标,同时为将来的多核系统进行架构设计;为此,本文研究了利用网络资源异构性的微体系结构技术。消耗级别(遵循自下而上的方法)以及从应用程序的需求/需求角度(遵循自上而下的方法)。通过自下而上的方法,利用关键性观察发现了异构性,即在采用典型的网络拓扑和网络路由协议时,并非NoC中的所有资源都得到了平等的利用。通过自上而下的方法,从应用程序的需求角度出发,利用异构性,并得到一个关键的观察结果,即并非所有应用程序都需要底层网络衬底提供类似的资源。基于这两种方法,本文提出了四种技术,其总体目标是设计高性能和高能效的NoC。第一种方案,称为带有频率调谐的路由器体系结构(RAFT),利用在线缓存中的异质性。芯片路由器,并提出了一种变频方案来操作它们。此设计是同类中第一个提出分布式拥塞管理方案的方案,该方案基于在不同频率级别上运行各个路由器。第二种方案称为HeteroNoC,其目标是片内网络中的缓冲区和链路均不均匀。与同类网络相比,使用相同数量的链路资源和较少的缓冲区资源,该建议表明,精心设计的异构网络可以减少平均延迟,提高网络吞吐量并降低功耗。第三种方案主张通过考虑应用程序的固有通信要求来设计片上网络。该建议基于以下观察结果:通常,可以将应用程序分类为对网络带宽敏感或对延迟敏感。基于此,该提案由片上互连基板中的两个独立的异构网络组成,其中一个网络经过定制以针对带宽敏感的应用程序进行优化,而第二个网络针对延迟敏感的应用程序进行优化。本文提出的第四个方案针对设备技术的异构性,以提高多核存储子系统的性能。该方案利用了基于自旋电子学的新兴存储技术的优势,称为自旋扭矩传输RAM(STT-RAM),用于存储子系统设计。 STT-RAM可以异构集成到硅片上,因此该建议主张以一种认识到STT-RAM高速缓存存储区存在的方式设计NoC。所提出的方案在面积和功率方面具有最小的开销,易于实施,并且在实际应用中显示出显着的益处。总体因此,本论文为设计异构网络以改善未来多核处理器的性能功率范围提供了有力的依据。

著录项

  • 作者

    Mishra, Asit K.;

  • 作者单位

    The Pennsylvania State University.;

  • 授予单位 The Pennsylvania State University.;
  • 学科 Engineering Computer.;Computer Science.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 14 p.
  • 总页数 14
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号