首页> 外文学位 >Energy efficient scheduling for real-time systems.
【24h】

Energy efficient scheduling for real-time systems.

机译:实时系统的节能调度。

获取原文
获取原文并翻译 | 示例

摘要

The goal of this dissertation is to extend the state of the art in real-time scheduling algorithms to achieve energy efficiency. Currently, Pfair scheduling is one of the few scheduling frameworks which can optimally schedule a periodic real-time taskset on a multiprocessor platform. Despite the theoretical optimality, there exist large concerns about efficiency and applicability of Pfair scheduling in practical situations. This dissertation studies and proposes solutions to such efficiency and applicability concerns. This dissertation also explores temperature aware energy management in the domain of real-time scheduling. The thesis of this dissertation is: the implementation efficiency of Pfair scheduling algorithms can be improved. Further, temperature awareness of a real-time system can be improved while considering variation of task execution times to reduce energy consumption.;This thesis is established through research in a number of directions. First, we explore the applicability of Dynamic Voltage and Frequency Scaling (DVFS) feature of the underlying platform, within Pfair scheduled systems. We propose techniques to reduce energy consumption in Pfair scheduling by integrating DVFS into the optimal Pfair scheduling algorithm. The integration was achieved by modifying the original Pfair scheduling algorithm to dynamically vary the weight of a task. Our experimental evaluation with synthetic and real benchmarks shows up to 66% savings in energy consumption compared to the basic Pfair scheduling algorithm. Next, we explore the problem of quantum size selection in Pfair scheduled systems so that runtime overheads are minimized. We study the system overhead as a function of quantum size and present quotient search (QS)---a quantum size selection heuristic to reduce the overall scheduling overhead of Pfair scheduling. Our results show that there is a notable difference in the runtime overhead (3% on the average), between QS and other quantum size selection strategies. We also propose a hardware design for a central Pfair scheduler core in a multiprocessor system to minimize the overheads and energy consumption of Pfair scheduling. Three different implementation schemes for the Pfair scheduling algorithm were considered: replicated software scheduler running on each processor, single software scheduler running on a dedicated processor and the proposed hardware scheduler. Experimental evaluation shows that the hardware scheduler outperforms the other two implementation schemes by orders of magnitude in terms of scheduling delay and energy consumption. Finally, we propose a temperature aware energy management scheme for tasks with varying execution times. The proposed scheme, TA-DVS, reduces temperature constraint violations by 18.9% on the average, compared to existing schemes without adversely affecting energy consumption.
机译:本文的目的是在实时调度算法中扩展现有技术水平,以实现能源效率。当前,Pfair调度是可以在多处理器平台上最佳调度周期性实时任务集的少数调度框架之一。尽管有理论上的最优性,但在实际情况下,人们对Pfair调度的效率和适用性仍存在很大的担忧。本文研究并提出了解决此类效率和适用性问题的方案。本文还探讨了实时调度领域的温度感知型能源管理。论文的主要内容是:可以提高Pfair调度算法的实现效率。此外,在考虑任务执行时间变化以降低能耗的同时,还可以提高实时系统的温度意识。首先,我们在Pfair计划的系统中探索基础平台的动态电压和频率缩放(DVFS)功能的适用性。我们提出了通过将DVFS集成到最佳Pfair调度算法中来减少Pfair调度中能耗的技术。通过修改原始的Pfair调度算法以动态改变任务的权重来实现集成。与基本的Pfair调度算法相比,我们使用综合基准和实际基准进行的实验评估显示,最多可节省66%的能源消耗。接下来,我们探讨了Pfair调度系统中的量子大小选择问题,以使运行时开销最小化。我们研究了作为量子大小的函数的系统开销,并提出了商数搜索(QS)-一种量子大小选择启发式方法,以减少Pfair调度的总体调度开销。我们的结果表明,在QS和其他量子尺寸选择策略之间,运行时开销存在显着差异(平均3%)。我们还为多处理器系统中的中央Pfair调度程序内核提出了一种硬件设计,以最大程度地减少Pfair调度的开销和能耗。考虑了Pfair调度算法的三种不同实现方案:在每个处理器上运行的复制软件调度程序,在专用处理器上运行的单个软件调度程序和建议的硬件调度程序。实验评估表明,在调度延迟和能耗方面,硬件调度器的性能优于其他两种实现方案。最后,我们针对具有不同执行时间的任务提出了一种温度感知型能量管理方案。与现有方案相比,拟议方案TA-DVS与现有方案相比,平均可将违反温度约束的情况降低18.9%。

著录项

  • 作者

    Gupta, Nikhil.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Computer.;Computer Science.;Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 120 p.
  • 总页数 120
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号