首页> 外文学位 >Investigation of actuated droplet motion on smooth and superhydrophobic surfaces.
【24h】

Investigation of actuated droplet motion on smooth and superhydrophobic surfaces.

机译:在光滑和超疏水表面上驱动液滴运动的研究。

获取原文
获取原文并翻译 | 示例

摘要

Efficient droplet transport is critical in microassays, microfluidic devices, and a range of heat transfer applications. The main advantages of miniaturizing assays and bioanalytical tools include improved performance and speed, reduced cost, and the ability to perform parallel and integrated analysis. A careful study of the electrically (and gravitationally) actuated droplet motion on hydrophobic surfaces is essential to understanding and improving performance in these applications. The first part of the thesis focuses on understanding the physics of droplet motion under gravitational actuation. Investigation of droplet actuation and motion under the action of electrical forces is conducted in the remaining part of the thesis.;The physics of droplet motion on a smooth surface before rolling off and at terminal velocity are studied under gravitational actuation. An experimentally validated model based on the Volume of Fluid - Continuous Surface Force (VOF-CSF) framework with varying contact angles along the triple contact line is developed to predict droplet statics and dynamics on an incline. The model is successfully used to predict critical inclination angle and the terminal velocity of the droplet beyond the critical inclination angle. The effect of contact angle models on the terminal velocity prediction is investigated. The physics of droplet motion, including the internal fluid motion, is explained in detail.;The effect of electrowetting is incorporated into the VOF-CSF framework for droplets on smooth surfaces. The droplet motion is shown to originate from the contact line. Contact line friction is shown to be the dominant damping force. An approximate mathematical model is successfully developed to predict the overall contact line motion of the droplet.;The numerical model is extended to include a treatment of superhydrophobic surfaces through geometrical modeling of the microstructured surface with full fidelity. The model accurately predicts the droplet shapes, apparent contact angle and the voltage required to induce Cassie-Wenzel transition on two different surface morphologies. The transient features of the Cassie-Wenzel transition are explained through the analysis of the transient surface energy and contact line lengths. The effective contact line friction coefficient on surfaces is predicted using the approximated mathematical model developed for smooth surfaces.
机译:在微分析,微流控设备和一系列传热应用中,有效的液滴传输至关重要。小型化测定和生物分析工具的主要优点包括提高的性能和速度,降低的成本以及执行并行和集成分析的能力。仔细研究疏水表面上电(和重力)驱动的液滴运动对于理解和改进这些应用程序的性能至关重要。本文的第一部分着重于了解重力作用下液滴运动的物理学。论文的其余部分对液滴的驱动和运动进行了研究。重力作用下,研究了液滴在滑落前和终速度下在光滑表面上的运动机理。建立了一个基于流体的连续表面力(VOF-CSF)框架的实验验证模型,该模型沿三重接触线具有变化的接触角,以预测斜面上的液滴静力学和动力学。该模型已成功用于预测临界倾角和超过临界倾角的液滴最终速度。研究了接触角模型对终端速度预测的影响。详细说明了液滴运动的物理原理,包括内部流体的运动。电润湿的效果已纳入VOF-CSF框架中,用于光滑表面上的液滴。液滴运动显示为源自接触线。接触线摩擦被证明是主要的阻尼力。成功开发了一个近似的数学模型来预测液滴的总体接触线运动。数值模型已扩展为通过完全保真的微结构化表面的几何建模来处理超疏水表面。该模型可准确预测液滴形状,视在接触角以及在两种不同表面形态上引起Cassie-Wenzel转变所需的电压。通过分析瞬态表面能和接触线长度来解释Cassie-Wenzel过渡的瞬态特征。使用为光滑表面开发的近似数学模型可以预测表面上的有效接触线摩擦系数。

著录项

  • 作者单位

    Purdue University.;

  • 授予单位 Purdue University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 179 p.
  • 总页数 179
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号