首页> 外文学位 >Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption.
【24h】

Organic/Inorganic Hybrid Nanocomposite Infrared Photodetection by Intraband Absorption.

机译:带内吸收的有机/无机杂化纳米复合材料红外光电检测。

获取原文
获取原文并翻译 | 示例

摘要

The ability to detect infrared radiation is vital for a host of applications that include optical communication, medical diagnosis, thermal imaging, atmospheric monitoring, and space science. The need to actively cool infrared photon detectors increases their operation cost and weight, and the focus of much recent research has been to limit the dark current and create room-temperature infrared photodetectors appropriate for mid-to-long-wave infrared detection. Quantum dot infrared photodetectors (QDIPs) provide electron quantum confinement in three dimensions and have been shown to demonstrate high temperature operation (T>150 K) due to lower dark currents. However, these inorganic devices have not achieved sensitivity comparable to state-of-the-art photon detectors, due in large part to the inability to control the uniformity (size and shape) of QDs during strained-layer epitaxy.;The purpose of this dissertation research was to investigate the feasibility of room-temperature infrared photodetection that could overcome the shortfalls of QDIPs by using chemically synthesized inorganic colloidal quantum dots (CQDs). CQDs are coated with organic molecules known as surface ligands that prevent the agglomeration of dots while in solution. When CQDs are suspended in a semiconducting organic polymer, these materials are known as organic/inorganic hybrid nanocomposites. The novel approach investigated in this work was to use intraband transitions in the conduction band of the polymer-embedded CQD for room-temperature photodetection in the mid-wave, and possibly long-wave, infrared ranges. Hybrid nanocomposite materials promise room-temperature operation due to: (i) large bandgaps of the inorganic CQDs and the semiconducting polymer that reduce thermionic emission; and (ii) low dark current due to the three-dimensional electron confinement in the CQD and low carrier mobility in the semiconducting polymer. The primary material system investigated in this research was CdSe CQDs embedded in the conjugated polymer poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-(1-cyanovinylene)phenylene] (MEH-CN-PPV).;Photoluminescence (PL) spectroscopy of MEH-CN-PPV thin films was conducted to determine the dependence of polymer morphology on deposition method in order to identify a reliable device fabrication technique. Three different deposition methods were investigated: drop-casting and spin-casting, which are solution-based; and matrix-assisted pulsed laser evaporation (MAPLE), which is a vacuum-based method that gently evaporates polymers (or hybrid nanocomposites) and limits substrate exposure to solvents. It was found that MAPLE deposition provides repeatable control of the thin film morphology and thickness, which is important for nanocomposite device optimization.;Ultra-fast PL spectroscopy of MEH-CN-PPV/CdSe thin films was investigated to determine the charge generation and relaxation dynamics in the hybrid nanocomposite thin films. The mathematical fitting of time-integrated and time-resolved PL provided a rigorous and unique model of the charge dynamics, which enabled calculation of the radiative and non-radiative decay lifetimes in the polymer and CQD. These results imply that long-lived electrons exist in the conduction band of the CQD, which demonstrate that it should be possible to generate a mid- to long-wave infrared photocurrent based on intraband transitions. In fact, room-temperature, intraband, mid-infrared absorption was measured in thin films of MEH-CN-PPV/CdSe hybrid nanocomposites by Fourier transform infrared (FTIR) absorbance spectroscopy. In addition, the hybrid nanocomposite confined energy levels and corresponding oscillator strengths were calculated in order to model the absorption spectrum. The calculated absorption peaks agree well with the measured peaks, demonstrating that the developed computer model provides a useful design tool for determining the impact of important materials system properties, such as CQD size, organic surface ligand material choice, and conduction band offset due to differences in CQD and polymer electron affinities.;Finally, a room-temperature, two terminal, hybrid nanocomposite mid-infrared photoconductor based on intraband transitions was demonstrated by FTIR spectral response measurements, measuring a spectral responsivity peak of 4.32 microA/W at 5.5microm (5 volts), and calibrated blackbody spectral photocurrent measurements, measuring a spectral responsivity peak of 4.79 microA/W at 5.7 microm (22 volts). This device characterization demonstrated that while the novel approach of intraband infrared photodetection in hybrid nanocomposites is feasible, significant challenges exist related to device fabrication and operation. Future work is proposed that could address some of these important issues.
机译:检测红外辐射的能力对于包括光通信,医学诊断,热成像,大气监测和空间科学在内的许多应用至关重要。主动冷却红外光子探测器的需求增加了它们的运行成本和重量,最近的研究重点是限制暗电流并创建适用于中长波红外探测的室温红外光探测器。量子点红外光电探测器(QDIP)在三个维度上提供了电子量子限制,并且由于较低的暗电流而被证明具有高温操作(T> 150 K)。但是,这些无机器件的灵敏度无法与最新的光子探测器相比,这在很大程度上是由于在应变层外延期间无法控制QD的均匀性(尺寸和形状)。论文的研究目的是探讨利用化学合成的无机胶体量子点(CQDs)克服室温量子点缺陷的室温红外光检测的可行性。 CQD涂有称为表面配体的有机分子,可防止溶液中点的团聚。当CQD悬浮在半导体有机聚合物中时,这些材料称为有机/无机杂化纳米复合材料。在这项工作中研究的新方法是在聚合物嵌入的CQD的导带中使用带内跃迁,以在中波和可能在长波的红外范围内进行室温光电检测。杂化纳米复合材料有望在室温下运行,这是由于:(i)无机CQD和半导体聚合物的大带隙可减少热电子发射; (ii)由于CQD中的三维电子限制和半导体聚合物中的低载流子迁移率而导致的暗电流低。在这项研究中研究的主要材料系统是嵌入共轭聚合物聚[2-甲氧基-5-(2'-乙基己氧基)-1,4-(1-氰基亚乙烯基)亚苯基](MEH-CN-PPV)中的CdSe CQD。 ;进行了MEH-CN-PPV薄膜的光致发光(PL)光谱分析,以确定聚合物形态对沉积方法的依赖性,从而确定了可靠的器件制造技术。研究了三种不同的沉积方法:基于溶液的浇铸法和旋转浇铸法;以及基质辅助脉冲激光蒸发(MAPLE),这是一种基于真空的方法,可缓慢蒸发聚合物(或杂化纳米复合材料)并限制基材在溶剂中的暴露。发现MAPLE沉积可提供对薄膜形态和厚度的可重复控制,这对于纳米复合器件的优化非常重要。;研究了MEH-CN-PPV / CdSe薄膜的超快PL光谱,以确定电荷的产生和弛豫杂化纳米复合薄膜的动力学。时间积分和时间分辨PL的数学拟合提供了电荷动力学的严格而独特的模型,该模型能够计算聚合物和CQD中的辐射衰减寿命和非辐射衰减寿命。这些结果表明,长寿命电子存在于CQD的导带中,这表明应该有可能基于带内跃迁产生中长波红外光电流。实际上,通过傅里叶变换红外(FTIR)吸收光谱法测量了MEH-CN-PPV / CdSe杂化纳米复合材料薄膜的室温,带内,中红外吸收率。另外,计算杂化纳米复合材料的能级水平和相应的振荡器强度,以便对吸收光谱进行建模。计算得出的吸收峰与测得的峰非常吻合,表明开发的计算机模型提供了一种有用的设计工具,可用于确定重要材料系统特性(例如CQD尺寸,有机表面配体材料的选择以及由于差异引起的导带偏移)的影响最后,通过FTIR光谱响应测量证明了基于带内跃迁的室温,两末端,杂化的纳米复合纳米复合室温红外光电导体,在5.5μm处测量了4.32 microA / W的光谱响应峰( 5伏)和校准的黑体光谱光电流测量,在5.7微米(22伏)时测量到4.79微安/瓦的光谱响应度峰值。该器件表征证明,尽管在杂合纳米复合材料中进行带内红外光电检测的新方法可行,但与器件制造和操作相关的重大挑战仍然存在。建议将来的工作可以解决其中一些重要问题。

著录项

  • 作者

    Lantz, Kevin Richard.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Engineering Electronics and Electrical.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:45:15

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号