首页> 外文学位 >Temperature Compensated, High Common Mode Range, Cu-Trace Based Current Shunt Monitors Design and Analysis.
【24h】

Temperature Compensated, High Common Mode Range, Cu-Trace Based Current Shunt Monitors Design and Analysis.

机译:基于温度补偿的高共模范围基于Cu-Trace的电流分流监控器的设计和分析。

获取原文
获取原文并翻译 | 示例

摘要

Sensing and controlling current flow is a fundamental requirement for many electronic systems, including power management (DC-DC converters and LDOs), battery chargers, electric vehicles, solenoid positioning, motor control, and power monitoring. Current Shunt Monitor (CSM) systems have various applications for precise current monitoring of those aforementioned applications. CSMs enable current measurement across an external sense resistor (RS) in series to current flow. Two different types of CSMs designed and characterized in this paper. First design used direct current reading method and the other design used indirect current reading method. Proposed CSM systems can sense power supply current ranging from 1mA to 200mA for the direct current reading topology and from 1mA to 500mA for the indirect current reading topology across a typical board Cu-trace resistance of 1 ohm with less than 10 microV input-referred offset, 0.3 microV/°C offset drift and 0.1% accuracy for both topologies. Proposed systems avoid using a costly zero-temperature coefficient (TC) sense resistor that is normally used in typical CSM systems. Instead, both of the designs used existing Cu-trace on the printed circuit board (PCB) in place of the costly resistor. The systems use chopper stabilization at the front-end amplifier signal path to suppress input-referred offset down to less than 10 microV. Switching current-mode (SI) FIR filtering technique is used at the instrumentation amplifier output to filter out the chopping ripple caused by input offset and flicker noise by averaging half of the phase 1 signal and the other half of the phase 2 signal. In addition, residual offset mainly caused by clock feed-through and charge injection of the chopper switches at the chopping frequency and its multiple frequencies notched out by the since response of the SI-FIR filter. A frequency domain Sigma Delta ADC which is used for the indirect current reading type design enables a digital interface to processor applications with minimally added circuitries to build a simple 1st order Sigma Delta ADC. The CSMs are fabricated on a 0.7microm CMOS process with 3 levels of metal, with maximum V ds tolerance of 8V and operates across a common mode range of 0 to 26V for the direct current reading type and of 0 to 30V for the indirect current reading type achieving less than 10nV/sqrtHz of flicker noise at 100 Hz for both approaches. By using a semi-digital SI-FIR filter, residual chopper offset is suppressed down to 0.5mVpp from a baseline of 8mVpp, which is equivalent to 25dB suppression.
机译:感应和控制电流是许多电子系统的基本要求,包括电源管理(DC-DC转换器和LDO),电池充电器,电动汽车,螺线管定位,电机控制和电源监控。电流分流监控器(CSM)系统具有各种应用,可以对上述那些应用进行精确的电流监控。 CSM使与外部电流串联的外部检测电阻(RS)上的电流测量成为可能。本文设计和表征了两种不同类型的CSM。第一种设计使用直流读取方法,另一种设计使用间接读取方法。拟议的CSM系统可以在典型的1Ω电路板铜迹线电阻(输入参考偏移小于10V)下,感测直流电流拓扑结构的电源电流,范围为1mA至200mA,间接电流拓扑结构的范围为1mA至500mA。两种拓扑结构的失调漂移为0.3 microV /°C,精度为0.1%。建议的系统避免使用通常在典型CSM系统中使用的昂贵的零温度系数(TC)检测电阻器。取而代之的是,这两种设计都使用印刷电路板(PCB)上的现有Cu迹线代替了昂贵的电阻器。该系统在前端放大器信号路径上使用斩波器稳定,以将输入参考失调抑制到小于10 microV。仪表放大器输出端使用开关电流模式(SI)FIR滤波技术,通过平均第一阶段信号的一半和第二阶段信号的另一半,来滤除由输入失调和闪烁噪声引起的斩波纹波。此外,残余偏移主要是由斩波开关的时钟馈通和电荷注入在斩波频率及其多个频率上引起的,此频率由SI-FIR滤波器的响应引起。用于间接电流读取类型设计的频域Sigma Delta ADC能够以最少的电路添加到处理器应用的数字接口,以构建简单的一阶Sigma Delta ADC。 CSM是在0.7微米CMOS工艺上制造的,具有3种金属水平,最大V ds容差为8V,在直流读取类型的0至26V的共模范围内工作,在间接电流读取的0至30V的共模范围内工作两种方法在100 Hz时均实现小于10nV / sqrtHz的闪烁噪声。通过使用半数字SI-FIR滤波器,可以将残余斩波器的失调从基线8mVpp降低到0.5mVpp,这相当于25dB的抑制。

著录项

  • 作者

    Yeom, Hyunsoo.;

  • 作者单位

    Arizona State University.;

  • 授予单位 Arizona State University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 105 p.
  • 总页数 105
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号