首页> 外文学位 >Brownian dynamics simulation of DNA in complex geometries.
【24h】

Brownian dynamics simulation of DNA in complex geometries.

机译:复杂几何形状中DNA的布朗动力学模拟。

获取原文
获取原文并翻译 | 示例

摘要

This dissertation is concerned with the dynamics of a long DNA molecule in complex geometries, driven by either electrostatic field or flow field. This is accomplished primarily through the use of Brownian dynamics simulation, which captures the essential physics at mesoscopic length scale, and allows us to simulate events happening on long time scale, such as DNA pore translocation and cyclic dynamics of a tethered DNA molecule in shear flow. General methods are developed for both electric field-driven and flow-driven DNA dynamics in complex geometries. In the electric field-driven case, we propose a novel class of electric field-actuated soft mechanical control element for microfluidics. Brownian dynamics (BD)/Finite Element Method (FEM) simulation efficiently explore the design space, and results demonstrate that the On/Off switching could be achieved within a proper parameter space. In the flow-driven case, we first examine the cyclic dynamics of a single DNA molecule tethered to a hard wall in shear flow. Extensive simulation results suggest a classical fluctuation-dissipation stochastic process and question the existence of periodicity of the cyclic dynamics, as previously claimed. We support our numerical findings with a simple analytical calculation for a harmonic dimer in shear flow. In the case of flow-driven DNA molecule in complex geometries, one big challenge is that an efficient algorithm is required to calculate fluctuating hydrodynamic interactions (HI) in complex geometries. We have developed an accelerated immersed boundary method that allows fast calculation of Brownian motion of polymer chains and other particles in complex geometries with HI. With this new method, the first detailed analysis of a recent set of interesting nanofluidic experiments involving DNA dynamics in a complex flow geometry is performed. This analysis explains the observed dynamics over a wide range of parameter values (flow rate, molecular wieght) and illustrates the important quantitative effect of the hydrodynamic interactions on the behavior of the system.
机译:本文研究的是由静电场或流场驱动的复杂几何形状中长DNA分子的动力学。这主要是通过使用布朗动力学模拟来完成的,布朗动力学模拟捕获了介观长度尺度上的基本物理学,并使我们能够模拟长时间尺度上发生的事件,例如DNA孔移位和束缚DNA分子在剪切流中的循环动力学。 。针对复杂几何形状中电场驱动和流动驱动的DNA动力学开发了通用方法。在电场驱动的情况下,我们提出了一种新型的微流体电场驱动软机械控制元件。布朗动力学(BD)/有限元方法(FEM)仿真有效地探索了设计空间,结果表明可以在适当的参数空间内实现On / Off切换。在流动驱动的情况下,我们首先检查在剪切流动中拴在硬壁上的单个DNA分子的循环动力学。大量的仿真结果表明了经典的波动耗散随机过程,并且对循环动力学的周期性是否存在提出了质疑,正如先前所声称的那样。我们通过对剪切流中的谐波二聚体进行简单的分析计算来支持我们的数值发现。对于复杂几何形状中流动驱动的DNA分子而言,一个很大的挑战是需要一种有效的算法来计算复杂几何形状中的波动流体动力相互作用(HI)。我们已经开发了一种加速的浸入边界方法,可以通过HI快速计算聚合物链和其他复杂几何形状的粒子的布朗运动。使用这种新方法,将对最近的一组有趣的纳米流体实验进行首次详细分析,这些实验涉及复杂流体几何中的DNA动力学。该分析解释了在广泛的参数值(流速,分子重量)上观察到的动力学,并阐明了流体动力学相互作用对系统行为的重要定量影响。

著录项

  • 作者

    Zhang, Yu.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Chemistry Biochemistry.;Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 167 p.
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号