首页> 外文学位 >Robotic simulation of disc arthroplasty surgery: Influence of surgical placement on motion segment dynamics.
【24h】

Robotic simulation of disc arthroplasty surgery: Influence of surgical placement on motion segment dynamics.

机译:椎间盘置换手术的机器人仿真:手术位置对运动节段动力学的影响。

获取原文
获取原文并翻译 | 示例

摘要

A variety of total disc replacement (TDR) designs exist for the treatment of disc pathologies. A key design parameter for a constrained ball and socket device is the location of the fixed center of rotation (COR). A previous study demonstrated that intact motion segment unit (MSU) mechanics and range of motion (ROM) were sensitive to the location of a prescribed sagittal plane rotational axis. Mal-alignment between the implant COR and the COR of the MSU may lead to an overloaded or over constrained condition.Two paradigms exist for the placement of a fixed COR TDR device relative to MSU anatomy: positioning the implant midline or posterior to midline. Presently, there are no data to indicate which paradigm may lead to better biomechanical/clinical outcome. This research attempts to evaluate changes in MSU mechanics and ROM as a result of variations in the size and placement of a simulated ball and socket TDR, like the ProDisc-L lumbar disc prosthesis.Six human cadaveric lumbar MSUs, L4-L5, were tested in flexion/extension using the Spine Robot to an end load limit of 8Nm. A fixed axis protocol was used to impose a pure rotation about a desired anatomical location. The Spine Robot was programmed to rotate the MSU about the COR of the implant. Subsequently, with the MSU held rigid, the implant was removed and rotation about the implant's COR was repeated. Thereafter, simulated CORs were tested in different anatomical locations as defined by a customized grid pattern. The grid pattern consisted of 8 CORs which simulated the placement of a medium and large size constrained ball and socket device. Measurements of shear forces along the disc plane, axial force normal to the disc plane, segmental bending moment, and segmental ROM were analyzed at each grid point.Analysis of MSU mechanics and ROM for the ProDisc-L and Simulated Implant cases revealed that the two conditions were not comparable. Transfer of tissue pretension from the implant to the Spine Robot on removal of the implant, and dynamic contact forces at the implant surfaces were the contributing factors to the differences observed.Simulated COR testing demonstrated that the posterior tissue response was sensitive to varying placements of the simulated implant. For both implant sizes, posterior positioning of the COR required distraction of the disc space. During flexion, posterior positioning resulted in significantly higher shear and axial forces as well as a trend for reduced ROM. ROM in flexion may have been influenced by different starting positions within the neutral zone due to disc space distraction. During extension, the posterior placement of the COR reduced loading and increased rotation suggesting better alignment with, or separation of the facet joints.This novel study was able to delineate significant differences in spinal tissue response to varying simulated sizes and placements of an ideal fixed COR TDR device. The results of this study suggested that with both implant sizes the posterior placement of the COR will tend to distract the disc space and provide significantly increased ROM in extension at the expense of increased loads on posterior ligaments in flexion.
机译:存在多种用于治疗椎间盘疾病的全盘更换(TDR)设计。受限的球窝装置的关键设计参数是固定旋转中心(COR)的位置。先前的研究表明,完整的运动段单元(MSU)力学和运动范围(ROM)对指定矢状面旋转轴的位置敏感。植入物COR与MSU的COR之间的对齐不当可能会导致过载或过度约束情况。相对于MSU解剖结构,固定COR TDR装置的放置存在两种范例:将植入物中线置于中线或中线后。目前,没有数据表明哪种范例可能导致更好的生物力学/临床结果。这项研究试图评估模拟球窝TDR的尺寸和位置变化(如ProDisc-L腰椎间盘假体)引起的MSU力学和ROM变化。测试了六个人尸体腰MSU L4-L5使用Spine机械手进行屈曲/伸展运动时,其最终载荷极限为8Nm。使用固定轴协议对目标解剖位置进行纯旋转。对脊柱机器人进行编程,以使MSU围绕植入物的COR旋转。随后,在MSU保持刚性的情况下,取出植入物,并重复围绕植入物COR的旋转。此后,在由定制网格图案定义的不同解剖位置测试了模拟COR。网格图案由8个COR组成,这些CORs模拟了一个中型和大型约束球窝装置的放置。在每个网格点分析了沿椎间盘平面的剪切力,垂直于椎间盘平面的轴向力,分段弯曲力矩和分段ROM的测量结果。对ProDisc-L和模拟植入物案例的MSU力学和ROM分析表明,这两个条件不可比。组织预紧力从植入物移出到Spine机器人上,以及植入物表面的动态接触力是造成观察到的差异的因素。模拟COR测试表明,后部组织反应对不同位置的植入物敏感。模拟植入物。对于两种植入物尺寸,COR的后定位都需要分散椎间盘空间。在屈曲过程中,后部定位导致明显更高的剪切力和轴向力,以及ROM减小的趋势。由于光盘空间分散,弯曲的ROM可能已受到中性区域内不同起始位置的影响。在延伸过程中,COR的后置位置减少了负荷并增加了旋转,提示与小关节的对齐或分离效果更好。这项新颖的研究能够描绘出脊椎组织对理想固定COR的不同模拟尺寸和位置的反应的显着差异。 TDR设备。这项研究的结果表明,在两种植入物尺寸的情况下,COR的后置位置均会分散椎间盘空间,并显着增加ROM的延伸范围,但以增加后屈韧带的负荷为代价。

著录项

  • 作者

    Dhillon, Braham K.;

  • 作者单位

    The University of Tennessee Health Science Center.;

  • 授予单位 The University of Tennessee Health Science Center.;
  • 学科 Biophysics Biomechanics.
  • 学位 M.S.
  • 年度 2010
  • 页码 125 p.
  • 总页数 125
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号