首页> 外文学位 >Investigation of neurite initiation and elongation for neural network engineering applications.
【24h】

Investigation of neurite initiation and elongation for neural network engineering applications.

机译:研究神经网络工程应用中的神经突引发和伸长。

获取原文
获取原文并翻译 | 示例

摘要

A method of defining the connectivity of a network of neurons in vitro would be desirable for investigations of information processing and neurite outgrowth. One potential method makes use of the phenomenon of “towed growth,” in which neurites elongate in response to externally applied force. Previous studies used compliant glass microneedles to elicit neurites, but we found this technique to be limited in terms of the range of and control over applied force that could be achieved. Therefore, we adapted a new technique using magnetic beads in a high-gradient magnetic field to apply forces to cells in the range of a few piconewtons to several nanonewtons with greater accuracy, precision, and control over force than glass microneedles. Using this technique, we systematically investigated the role of force and the rate of force application in neurite initiation and elongation. We found an optimum level of force for initiation of neurites as opposed to bead detachment and failure of initiation, and that initiation was inhibited when neurons were exposed to higher rate force ramps. We also found that the kinetics of initiation appeared to be first-order, and that initiation depended on the presence of dynamic microtubules. In addition, we showed that force-induced neurites could form contacts with other neurons that persisted for at least 24 hours in culture. Despite the application of constant force, neurites elongation via magnetic beads was in agreement with a random walk. A model of neurite outgrowth that relied on microtubule dynamic instability, breaking, and stabilization in the growth cone reproduced the short time-scale variability in elongation rate but not the random walk behavior, suggesting that microtubule behavior does not dominate neurite length dynamics. Our results demonstrate the utility of the magnetic bead force application technique for investigations of cytoskeletal mechanisms of neurite outgrowth, and potentially the engineering of neural network connectivity.
机译:定义体外神经元网络的连通性的方法对于研究信息处理和神经突生长是理想的。一种潜在的方法利用了“拖曳生长”现象,其中神经突响应于外部施加的力而伸长。先前的研究使用顺应性玻璃微针诱发神经突,但我们发现该技术在可实现的施加力范围和控制方面受到限制。因此,我们采用了一种在高梯度磁场中使用磁珠的新技术,以比玻璃微针更大的精度,精度和对力的控制力,将力施加到几皮微牛顿到几纳米牛顿范围内的细胞。使用这项技术,我们系统地研究了力的作用以及施加力在神经突起始和伸长中的速率。我们发现了一个最佳的神经突起始力,而不是珠子脱落和起始失败,并且当神经元暴露于较高速率的斜率时,起始被抑制了。我们还发现引发的动力学似乎是一阶的,并且引发取决于动态微管的存在。此外,我们证明了力诱导的神经突可能与其他在培养中持续至少24小时的神经元形成接触。尽管施加了恒定的力,通过磁珠的神经突伸长与随机游走是一致的。依赖于微管动态不稳定性,断裂和生长锥稳定的神经突生长模型,再现了伸长率的短时间尺度变化,但没有随机游走行为,这表明微管行为并不支配神经突长度动力学。我们的结果证明了磁珠力施加技术在研究神经突向外生长的细胞骨架机制以及神经网络连通性工程方面的实用性。

著录项

  • 作者

    Fass, Joseph Nathaniel.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Chemical.; Engineering Biomedical.; Biology Cell.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.5966
  • 总页数 167
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化工过程(物理过程及物理化学过程);
  • 关键词

  • 入库时间 2022-08-17 11:45:16

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号