首页> 外文学位 >Understanding effects of anthropogenic activities on element cycling in temperate forest watersheds.
【24h】

Understanding effects of anthropogenic activities on element cycling in temperate forest watersheds.

机译:了解人为活动对温带森林流域元素循环的影响。

获取原文
获取原文并翻译 | 示例

摘要

Following an introductory Chapter 1, in Chapter 2 we present results from repeated synoptic surveys of streamwater chemistry for ∼30 watersheds spanning one of the largest nitrogen (N) deposition gradients in North America, located within the Great Smoky Mountains National Park. We primarily focus on patterns in dissolved organic matter (DOM) concentrations and composition across the N gradient, with particular attention given to dissolved organic nitrogen (DON). DON dominates the global flux of N between terrestrial and aquatic systems, yet we have little understanding of how this prevailing N form responds to human N pollution. We found that DON concentrations often declined significantly with increasing catchment N loading and, through laboratory bioavailability assays, found that when N limitation is alleviated increased microbial demand for labile carbon (C) may drive this pattern. We use these findings to propose a new hypothesis for the potential responses of DON to anthropogenic N pollution, which states that DON concentrations in forested watersheds may systematically decline with increasing N loading due to increased heterotrophic demand for labile reduced C.;Chapter 3 is an extension of Chapter 2, in which we attempt to assess the role of DON as either a C or N source within an entire stream reach through a series of independent manipulations of labile C and inorganic N availabilities. In the second order reach of Walker Branch, a well-studied stream in eastern Tennessee, we performed a series of progressive (i.e., sequentially increasing concentrations), kinetic (i.e., very short duration), enrichments of acetate and nitrate on two successive days during April of 2009 before the tree canopy emerged and when in-stream algal production was high. In this system and on these short timescales, we were unable to elicit the same responses observed at sites across the chronic N deposition gradient in Chapter 2. We did, however, observe that DOM processing and composition was significantly altered. Using fluorescence characterization of DOM, we found that adding acetate displaced heterotrophic demand for terrestrially derived DOM. Conversely, nitrate additions stimulated production of highly bioavailable autochthonous DOM within the stream channel, which resulted in an indirect displacement of demand for terrestrially derived DOM. Understanding DOM dynamics in streams has long been a priority for stream ecologists because it represents an important energy and nutrient source fueling stream metabolism. Our results not only provide new insight into the processes controlling DOM concentrations and composition in Walker Branch, but also demonstrate the potential of this method for future investigations of DOM in stream ecosystems.;In Chapter 4 we assess the role of climate change on long-term (1989--2009) streamwater concentrations and fluxes from the West Fork of the Walker Branch watershed. At this site, mean annual air temperatures have increased by ∼2°C, while mean annual precipitation and runoff have declined by ∼20% and >40%, respectively, since 1989. We use weekly streamwater samples to assess trends in concentrations and fluxes for 9 different solutes over this period and, using wet deposition data, also evaluate changes in approximate watershed input-output budgets. The observed change in runoff was accompanied by a change in the proportional contributions of different soil flowpaths to streamflow generation through time, with deep groundwater playing an increasingly important role in recent years. Solutes that increase in concentration deeper in the soil-saprolite profile exhibited significant increases in streamwater concentrations through time, while solutes with higher concentrations in soil solution in the upper profile decreased in concentration. Solutes that exhibit much less variation across soil flowpaths typically display large seasonal patterns in streamwater concentrations that are driven by in-stream biological uptake. However, most nutrient solutes exhibited little or no trend in concentrations through time, indicating that the biological controls on these solutes have remained relatively unaltered by the observed changes in climate over the 20-year period. On shorter timescales, changes in the frequency or severity of multi-year droughts, as well as changes in the frequency or intensity of storms that disrupt in-stream uptake, can have large impacts on watershed input-output budgets of nutrient solutes even if the effects are not linear through time. Our results demonstrate the important role that changing climates can have on watershed element cycles, illustrating that climate effects can manifest through either changes in hydrologic regime or through changing biogeochemical process rates. (Abstract shortened by UMI.)
机译:在第1章的介绍性内容之后,在第2章中,我们介绍了对大烟山国家公园内约30个流域(横跨北美最大的氮(N)沉积梯度之一)的流域水化学过程进行的重复天气概况调查的结果。我们主要关注整个N梯度中溶解有机物(DOM)浓度和组成的模式,特别关注溶解有机氮(DON)。 DON主导着陆地和水生系统之间的全球氮通量,但我们对这种普遍存在的氮形式如何对人类氮污染的反应知之甚少。我们发现,随着流域氮负荷的增加,DON浓度通常会显着下降,并且通过实验室生物利用度测定,发现当氮限制得到缓解时,微生物对不稳定碳(C)的需求增加可能会驱动这种模式。我们利用这些发现为DON对人为氮污染的潜在反应提出了新的假设,该研究指出森林流域中的DON浓度可能会随着氮负荷的增加而系统下降,这是由于对不稳定的C的异养需求增加所致。第三章是第二章的扩展,其中我们尝试通过一系列对不稳定的C和无机N可用性的独立操纵来评估DON作为整个流中C或N源的作用。在田纳西州东部经过充分研究的溪流Walker Branch的二级流域,我们连续两天进行了一系列渐进式(即,浓度不断增加),动力学(即,持续时间很短),乙酸盐和硝酸盐的富集在2009年4月树冠出现之前以及流中藻类产量较高时。在这个系统中以及如此短的时间尺度上,我们无法在第2章中的长期N沉积梯度上引起相同的响应。但是,确实观察到DOM的处理和组成发生了显着变化。使用DOM的荧光表征,我们发现添加乙酸盐替代了对地面衍生DOM的异养需求。相反,添加硝酸盐刺激了河道内高生物利用度的本地DOM的产生,这间接导致了对陆生DOM需求的取代。长期以来,了解河流中的DOM动态一直是河流生态学家的首要任务,因为它代表着促进河流新陈代谢的重要能量和营养来源。我们的结果不仅提供了对Walker Branch中控制DOM浓度和组成的过程的新见解,而且还证明了该方法在河流生态系统中DOM的未来研究中的潜力。在第4章中,我们评估了气候变化对长期生态系统的作用。术语(1989--2009),沃克支流域西叉的河水浓度和通量。自1989年以来,该地点的年平均气温升高了约2°C,而年均降水量和径流分别下降了约20%和> 40%。我们使用每周的河水样本来评估浓度和通量趋势。在此期间分析了9种不同的溶质,并使用湿沉降数据评估了流域投入产出预算的近似变化。观测到的径流变化伴随着不同土壤流径对随着时间流向水流产生的比例贡献的变化,近年来,深层地下水起着越来越重要的作用。在土壤-腐泥土剖面较深处浓度增加的溶质随时间显示溪水浓度显着增加,而在较高剖面的土壤溶液中浓度较高的溶质浓度降低。在整个土壤流径中表现出较小变化的溶质通常在溪流中的浓度表现出较大的季节性模式,这是由溪流中生物吸收引起的。但是,大多数营养溶质随时间的浓度变化很小或没有趋势,表明在20年间观察到的气候变化对这些溶质的生物控制相对保持不变。在较短的时间尺度上,多年干旱的频率或严重程度的变化,以及破坏河流吸收的暴风雨的频率或强度的变化,可能对营养溶质的分水岭投入产出预算产生重大影响,即使效果在时间上不是线性的。我们的结果表明,气候变化对分水岭要素循环具有重要作用,说明气候影响可以通过水文状况的变化或通过生物地球化学过程速率的变化来体现。 (摘要由UMI缩短。)

著录项

  • 作者

    Lutz, Brian D.;

  • 作者单位

    Duke University.;

  • 授予单位 Duke University.;
  • 学科 Biology Ecology.;Biogeochemistry.;Environmental Sciences.;Climate Change.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 178 p.
  • 总页数 178
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号