首页> 外文学位 >Adsorbents with Chemically Bonded Saccharide Surfaces: Synthesis and Application for Stereoisomer Separation And The Synthesis of Chiral Porous Silicas using Templates Chiral Surfactant.
【24h】

Adsorbents with Chemically Bonded Saccharide Surfaces: Synthesis and Application for Stereoisomer Separation And The Synthesis of Chiral Porous Silicas using Templates Chiral Surfactant.

机译:具有化学键的糖类表面的吸附剂:立体异构体分离的合成和应用以及使用模板手性表面活性剂的手性多孔二氧化硅的合成。

获取原文
获取原文并翻译 | 示例

摘要

Stereoisomeric separation is a common and at times difficult problem. Using chiral materials as stationary phases for stereoisomeric separations is a common practice. Saccharides have many stereocenters making them ideal for stereoselective recognition. They are natural products that are relatively inexpensive. They typically contain numerous functional groups which are mainly hydroxyl groups. Some saccharides have at least one amino group. Our research has focused mainly on the design and synthesis of materials with defined surface structures containing saccharides and the subsequent study of their use in separating stereoisomers such as derivatized monosaccharides, Pirkle's alcohol, and cis- and trans-stilbene oxide. In addition, we have attempted pseudomorphic transformations of Prodigy and SBA-15 silica to helical silica forms using chiral surfactants.;It is known that carbon-sulfur bonding is hydrolytically stable 1-2 and carbohydrates linked to silica in this fashion have not been reported in the literature. For this reason, we have prepared a series of peracetylated-1-thiol-saccharide analogs (1, 3, 7 and 13 glucose units). The synthesis of peracetylated-1-thiol-saccharides is demonstrated in Chapter 1. These ligands were characterized by high pressure liquid chromatography (HPLC), mass spectrometry (MS), ultraviolet (UV), circular dichroism (CD), matrix-assisted laser desorption/ionization (MALDI) and nuclear magnetic resonance (NMR).;Peracetylated-1-thiol-saccharides were used as ligands on our new class of adsorbents in which a thiol group links peracetylated saccharides to silica through an epoxy-silane linker, glycido-oxypropyl trimethoxysilane. The preparation of these trimethoxysilylated saccharides are also described in Chapter 1. The saccharide stationary phases were prepared using two methods: (1) the direct incorporation of derivatized saccharides onto the silica structure in a process known as co-condensation and, (2) post-synthesis grafting-direct immobization methods.;Chapter 2 discusses the synthesis of mesoporous silica with a well-ordered network of porous materials. These materials were prepared using co-condensation of tetraethyl orthosilicate (TEOS) with trimethoxy-silylated derivatives of peracetylated glucose, maltotriose, and maltoheptaose affording ordered mesoporous SBA-15 type silicas. The post synthesis grafting method was performed by modifying Prodigy silica with analogs (1, 3, 7 and 13 glucose units) following direct immobilization and surface chemical assembly approaches. The post synthesis grafting of the saccharide Prodigy silica materials is described in detail in Chapter 3. The resulting materials from saccharide SBA-15 type and Prodigy silicas were characterized by FTIR, nitrogen isotherms, TGA, elemental analysis and TEM (for SBA-15 type silica). The saccharide silica stationary phases prepared have been evaluated in normal phase and reverse phase HPLC stereoisomeric separations.;Chapter 4 focuses on the synthesis of chiral mesoporous silicas using the anionic chiral surfactant, N-myristoyl-L-alanine, and the cationic oligosaccharide, chitosan. In order to synthesize these silicas, co-condensation and pseudomorphic transformation techniques were used. These materials were prepared using different temperatures, aging and pH. The resulting materials were characterized by nitrogen isotherms and TEM. TEM data suggests that the new silica forms could have an ordered helical porous structure.
机译:立体异构体分离是常见的且有时是困难的问题。使用手性材料作为固定相进行立体异构体分离是一种常见的做法。糖精具有许多立体中心,使其成为立体选择性识别的理想选择。它们是相对便宜的天然产品。它们通常包含许多主要是羟基的官能团。一些糖具有至少一个氨基。我们的研究主要集中在具有糖类表面结构明确的材料的设计和合成上,以及其在分离立体异构体(如衍生的单糖,Pirkle's醇以及顺式和反式二苯乙烯氧化物)分离中的后续研究。此外,我们尝试使用手性表面活性剂将Prodigy和SBA-15二氧化硅假型转化为螺旋二氧化硅形式;已知碳硫键具有1-2的水解稳定性,尚未报道以这种方式与二氧化硅连接的碳水化合物在文学中。因此,我们制备了一系列过乙酰化的-1-硫醇糖类似物(1、3、7和13个葡萄糖单位)。第1章演示了过乙酰化的1-巯基糖的合成。这些配体的特征在于高压液相色谱(HPLC),质谱(MS),紫外(UV),圆二色性(CD),基质辅助激光脱附/电离(MALDI)和核磁共振(NMR)。;全乙酰化的1-硫醇糖被用作我们新型吸附剂的配体,其中巯基通过环氧硅烷接头糖苷将过乙酰化的糖与二氧化硅连接-氧丙基三甲氧基硅烷。这些三甲氧基甲硅烷基化的糖的制备也在第1章中进行了描述。糖的固定相采用两种方法制备:(1)通过共缩合方法将衍生化的糖直接掺入二氧化硅结构中,以及(2)制备后-合成接枝-直接固定化方法。第2章讨论了具有良好的多孔材料网络的介孔二氧化硅的合成。这些材料是使用原硅酸四乙酯(TEOS)与过乙酰化葡萄糖,麦芽三糖和麦芽庚糖的三甲氧基甲硅烷基化衍生物进行共缩合制备的,提供了有序的中孔SBA-15型二氧化硅。合成后的接枝方法是在直接固定化和表面化学组装方法之后,通过用类似物(1、3、7和13个葡萄糖单元)修饰Prodigy二氧化硅来进行的。糖类Prodigy二氧化硅材料的合成后接枝将在第3章中详细描述。糖类SBA-15型和Prodigy二氧化硅得到的材料通过FTIR,氮等温线,TGA,元素分析和TEM(对于SBA-15类型)进行表征二氧化硅)。已在正相和反相HPLC立体异构体分离中评估了制备的糖化二氧化硅固定相。;第4章着重介绍了使用阴离子手性表面活性剂N-肉豆蔻酰基-L-丙氨酸和阳离子低聚糖壳聚糖制备手性介孔二氧化硅。为了合成这些二氧化硅,使用了共缩合和拟晶转化技术。这些材料是使用不同的温度,老化和pH值制备的。通过氮等温线和​​TEM对所得材料进行表征。 TEM数据表明,新的二氧化硅形式可能具有有序的螺旋多孔结构。

著录项

  • 作者

    Vega, Edwin.;

  • 作者单位

    Seton Hall University.;

  • 授予单位 Seton Hall University.;
  • 学科 Chemistry Analytical.;Chemistry Organic.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号