首页> 外文学位 >Seismic Behavior and Modeling of Anchored Nonstructural Components Considering the Influence of Cyclic Cracks.
【24h】

Seismic Behavior and Modeling of Anchored Nonstructural Components Considering the Influence of Cyclic Cracks.

机译:考虑循环裂缝影响的锚固非结构构件的地震行为和建模。

获取原文
获取原文并翻译 | 示例

摘要

During an earthquake, reinforced concrete members in a building will suffer cracking that oscillates as the building dynamically deforms. Equipment that services the building, such as mechanical and electrical items, are anchored to these components, and therefore will be subjected to this dynamic environment. Despite understanding this practical loading situation, as well as recognizing that anchor load capacity is significantly reduced when an anchor is embedded in cracked concrete, there remains a gap in knowledge regarding the effect of anchorage behavior on nonstructural component response. In particular, the effect of dynamic cyclic cracking coupled with inertia-generated tension load cycling on the anchor and component response has not been studied to date.;A new methodology involving experimental equipment and simulation tools is developed for investigating the seismic behavior of anchored nonstructural components and systems that accounts for the effects of simultaneous anchor tension load cycling and crack cycling on anchor behavior and anchored component response. To support the experimental ingredient of this work, a Cyclic Cracked Inertial Loading Rig (CCILR), Weighted Anchor Loading Laboratory Equipment (WALLE) system, and cracked concrete slabs, are designed and fabricated. Mounting the CCILR and WALLE onto a shake table results in a system that is able to simulate a concrete beam or slab from a building supporting an anchored nonstructural component. System-level shake table tests are conducted on floor mounted model nonstructural components anchored in cyclic cracks using epoxy, expansion, drop-in and undercut anchors to study the effect of a range of anchor types.;A nonlinear, lumped hysteresis anchor model is implemented and used to simulate anchor load-displacement response for tension load cycling dominant applications. The anchor model is calibrated against single anchor tests and subsequently extended for use in a system model of the anchored nonstructural components for predicting maximum system response.;It was determined that the load-displacement behavior of the anchorage, in particular, the ultimate displacement capacity of the anchor, plays an important role in the seismic response of tension load cycling dominated floor mounted nonstructural components. The experimental results also support the current code design philosophy for anchors, which specifies that either the anchor or the attachment should be ductile, or the anchor should be designed for a multiple of the expected load demand.
机译:在地震期间,建筑物中的钢筋混凝土构件会遭受随建筑物动态变形而振动的裂缝。为建筑物提供服务的设备(例如,机械和电气项目)固定在这些组件上,因此会受到这种动态环境的影响。尽管了解了这种实际的加载情况,并且认识到当将锚钉埋入开裂的混凝土中时,锚钉的承载能力会大大降低,但是关于锚固行为对非结构构件响应的影响的认识仍然存在空白。特别是,迄今为止,尚未研究动态循环开裂与惯性产生的拉力荷载循环对锚固和构件响应的影响。;;开发了一种涉及实验设备和仿真工具的新方法,用于研究锚固非结构的地震行为。考虑到同时锚固张力荷载循环和裂缝循环对锚固行为和锚固构件响应的影响的构件和系统。为了支持这项工作的实验成分,设计并制造了循环裂纹惯性载荷钻机(CCILR),加权锚固载荷实验室设备(WALLE)系统和裂纹混凝土板。将CCILR和WALLE安装到振动台上后,系统将能够模拟支撑锚定非结构构件的建筑物中的混凝土梁或楼板。使用环氧树脂,膨胀,沉入式和底切式锚栓,对在周期性裂缝中锚固的地面安装模型非结构构件进行了系统级振动台测试,以研究各种锚栓类型的影响。;实现了非线性集总滞后锚栓模型并用于模拟锚固载荷-位移响应,以用于拉伸载荷循环占主导地位的应用。针对单个锚固测试对锚固模型进行校准,然后将其扩展以用于锚固非结构构件的系统模型中,以预测最大系统响应。;确定锚固的载荷-位移行为,尤其是极限位移能力锚的作用在支配地面安装的非结构构件的拉力荷载循环的地震响应中起着重要作用。实验结果还支持当前的锚设计规范,该规范指定锚或附件应具有延展性,或者应针对预期载荷需求的倍数设计锚。

著录项

  • 作者

    Watkins, Derrick Andrew.;

  • 作者单位

    University of California, San Diego.;

  • 授予单位 University of California, San Diego.;
  • 学科 Engineering Geophysical.;Engineering Civil.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 549 p.
  • 总页数 549
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号