首页> 外文学位 >Development of valence-directed nanoparticle building blocks on the basis of controlled bio/nano-interfacing chemistry.
【24h】

Development of valence-directed nanoparticle building blocks on the basis of controlled bio/nano-interfacing chemistry.

机译:在受控的生物/纳米界面化学的基础上开发了价键导向的纳米粒子构造块。

获取原文
获取原文并翻译 | 示例

摘要

The assembly of nanoparticles in controllable and predictable ways would not only aid practical nanoscale assembly, which requires accurate and scalable assembly of large and complex nanoscale structures, but also would increase their utility for many applications, including electronics, optics, sensing and imaging, medical diagnostics, etc. Well-defined and controlled functionality and directionality of the building blocks are essential to actively control the molecular assembly processes at the nanometer scale. Such controls over the functionality and directionality would enable us to construct sophisticated nanostructures to take advantage of the increasing number of available nanocomponents and ultimately to approximate the complexity and the functionality of current microfabrication. We have developed a serial solid-phase placement approach to synthesize anisotropically or symmetrically functionalized gold nanoparticles (AuNPs), in which the functionality and directionality (e.g., numbers, locations, and orientations) of the functional ligands are controlled. Two types of bi-functionalized (bif-) AuNPs were synthesized at a site-specific manner with increased yield and accuracy: (1) homo-bif-AuNPs with two carboxyl groups at ∼180° angle (para-configuration) and (2) hetero-bif-AuNPs with one carboxyl and one amine functional groups at less than 180°, but greater than 90° angle (meta-configuration). With such control, we successfully demonstrated the assembly of intentionally designed one-dimensional (1D) chains with homo-bif-AuNPs and two-dimensional (2D) rings with hetero-bif-AuNPs, confirming the high functional as well as directional selectivity of the functionalized NPs. This study represents an important step towards accurate, reliable, and scaled-up manufacturing of complex nanoscale structures, potentially making 'bottom-up' nanofabrication of practical use. We have further developed the ligand replacement technology to achieve such active controls in biologically relavant aqueous solutions. Specifically, this was accomplished with passivating monolayers on AuNPs into water-soluble form and we successfully demonstrated the controlled assembly of the anisotropic structures such as dimers and 2D rings in aqueous solution. Furthermore, both control and complexity were further increased by conjugating DNA oligonucleotides. We could achieve functionalizations of up to six DNA in all x, y, and z directions. The oligonucleotide sequences used in this study were non-crosshybridizing, with which unplanned defects and errors from undesigned duplex formation in the assembly are minimized. Finally, our functionalization reaction schemes were evaluated mathematically using computational modeling. The ligand replacement reaction fit to a Langmurian kinetic equation at unsteady state. This indicates that the Langmurian kinetics could be an efficient model for nanoparticle-based chemical ligand reactions.
机译:以可控和可预测的方式组装纳米粒子不仅将有助于实际的纳米级组装,这要求对大型和复杂的纳米级结构进行精确且可扩展的组装,而且还将提高其在许多应用中的效用,包括电子,光学,传感和成像,医学良好定义和受控的构建基功能和方向性对于主动控制纳米级的分子组装过程至关重要。对功能和方向性的这种控制将使我们能够构建复杂的纳米结构,以利用不断增加的可用纳米组件数量,并最终近似当前微加工的复杂性和功能。我们已经开发了一系列固相放置方法来合成各向异性或对称官能化的金纳米颗粒(AuNPs),其中功能性配体的功能性和方向性(例如,数量,位置和方向)受到控制。以位点特异性的方式合成了两种类型的双功能化(bif-)AuNP,具有更高的收率和准确性:(1)在〜180°角具有两个羧基的同型bif-AuNPs(对位构型)和(2 )具有一个羧基和一个胺官能团的杂化bif-AuNP,其角度小于180°,但大于90°(元构型)。通过这种控制,我们成功地证明了有意设计的带有均比bif-AuNPs的一维(1D)链和带有异性bif-AuNPs的二维(2D)环的组装,证实了其高功能性和方向选择性功能化的NP。这项研究代表了朝着准确,可靠和按比例放大制造复杂纳米级结构迈出的重要一步,从而有可能使“自底向上”纳米加工成为现实。我们进一步开发了配体替代技术,以在生物学上相对纯净的水溶液中实现这种主动控制。具体而言,这是通过将AuNPs上的单层钝化成水溶性形式来完成的,我们成功地证明了各向异性结构(如二聚体和2D环)在水溶液中的受控组装。此外,通过缀合DNA寡核苷酸进一步增加了控制和复杂性。我们可以在x,y和z方向上最多实现六个DNA的功能化。这项研究中使用的寡核苷酸序列是非交叉杂交的,这样可以最大程度地减少计划外的缺陷和组装中未设计的双链体形成的错误。最后,使用计算模型对我们的官能化反应方案进行了数学评估。配体置换反应在非稳态下符合Langmurian动力学方程。这表明Langmurian动力学可能是基于纳米粒子的化学配体反应的有效模型。

著录项

  • 作者

    Kim, Jeong-Hwan.;

  • 作者单位

    University of Arkansas.;

  • 授予单位 University of Arkansas.;
  • 学科 Engineering Biomedical.;Nanotechnology.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 168 p.
  • 总页数 168
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号