首页> 外文学位 >Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers .
【24h】

Self-assembly of fibronectin mimetic peptide-amphiphile nanofibers .

机译:纤连蛋白模拟肽-两亲纳米纤维的自组装。

获取原文
获取原文并翻译 | 示例

摘要

Many therapeutic strategies incorporate peptides into their designs to mimic the natural protein ligands found in vivo. A few examples are the short peptide sequences RGD and PHSRN that mimic the primary and synergy-binding domains of the extracellular matrix protein, fibronectin, which is recognized by the cell surface receptor, alpha5beta 1 integrin. Even though scaffold modification with biomimetic peptides remains one of the most promising approaches for tissue engineering, the use of these peptides in therapeutic tissue-engineered products and drug delivery systems available on the commercial market is limited because the peptides are not easily able to mimic the natural protein. The design of a peptide that can effectively target the alpha5beta1 integrin would greatly increase biomimetic scaffold therapeutic potential. A novel peptide containing both the RGD primary binding domain and PHSRN synergy-binding domain for fibronectin joined with the appropriate linker should bind alpha 5beta1 integrin more efficiently and lead to greater cell adhesion over RGD alone.;Several fibronectin mimetic peptides were designed and coupled to dialkyl hydrocarbon tails to make peptide-amphiphiles. The peptides contained different linkers connecting the two binding domains and different spacers separating the hydrophobic tails from the hydrophilic headgroups. The peptide-amphiphiles were deposited on mica substrates using the Langmuir-Blodgett technique. Langmuir isotherms indicated that the peptide-amphiphiles that contained higher numbers of serine residues formed a more tightly packed monolayer, but the increased number of serines also made transferring the amphiphiles to the mica substrate more difficult. Atomic force microscopy (AFM) images of the bilayers showed that the headgroups might be bent, forming small divots in the surface. These divots may help expose the PHSRN synergy-binding domain. Parallel studies undertaken by fellow group members showed that human umbilical vein endothelial cells and alpha5beta1 integrins immobilized on an AFM tip preferred binding to a fibronectin mimetic peptide that contained both hydrophilic and hydrophobic residues in the linker and a medium length spacer.;Most cells require a three-dimensional scaffold in order to thrive. To incorporate the fibronectin mimetic peptide into a three-dimensional structure, a single hydrocarbon tail was attached to form a peptideamphiphile. Single-tailed peptide-amphiphiles have been shown to form nanofibers in solution and gel after screening of the electrostatic charges in the headgroup. These gels show promise as scaffolds for tissue engineering. A fibronectin mimetic peptide-amphiphile containing a linker with alternating hydrophobic and hydrophilic residues was designed to form nanofibers in solution. The critical micelle concentration of the peptide-amphiphile was determined to be 38 muM, and all subsequent experiments were performed above this concentration. Circular dichroism (CD) spectroscopy indicated that the peptide headgroup of the peptide-amphiphile forms an alpha+beta secondary structure; whereas, the free peptide forms a random secondary structure. Cryogenic-transmission electron microscopy (cryo-TEM) and small angle neutron scattering showed that the peptide-amphiphile self-assembled into nanofibers. The cryo-TEM images showed single nanofibers with a diameter of 10 nm and lengths on the order of microns. Images of higher peptideamphiphile concentrations showed evidence of bundling between individual nanofibers, which could give rise to gelation behavior at higher concentrations. The peptide-amphiphile formed a gel at concentrations above 6 mM. A 10 mM sample was analyzed with oscillating plate rheometry and was found to have an elastic modulus within the range of living tissue, showing potential as a possible scaffold for tissue engineering.
机译:许多治疗策略将肽纳入其设计中,以模拟体内发现的天然蛋白质配体。一些例子是短肽序列RGD和PHSRN,其模仿细胞外基质蛋白纤连蛋白的初级和协同结合结构域,其被细胞表面受体α5β1整联蛋白识别。尽管用仿生肽进行支架修饰仍然是组织工程中最有前途的方法之一,但由于这些肽不易模仿动物模型,因此在商业化市场上可买到的治疗性组织工程产品和药物递送系统中使用这些肽仍然受到限制。天然蛋白质。可以有效靶向α5β1整联蛋白的肽的设计将大大提高仿生支架的治疗潜力。与适当的接头连接的同时包含RGD初级结合域和PHSRN协同结合域的纤连蛋白的新型肽应更有效地结合α5beta1整联蛋白,并比单独的RGD导致更大的细胞粘附。;设计了几种纤连蛋白模拟肽并与之偶联二烷基碳氢化合物的尾巴,以制造肽-两亲物。肽含有连接两个结合结构域的不同接头和将疏水尾与亲水头基分开的不同间隔子。使用Langmuir-Blodgett技术将肽-两亲物沉积在云母基质上。 Langmuir等温线表明,含有更多数量丝氨酸残基的肽-两亲物形成了更紧密堆积的单层,但是增加的丝氨酸数量也使得将两亲物转移到云母底物上更加困难。双层的原子力显微镜(AFM)图像显示,头组可能会弯曲,从而在表面形成小的凹痕。这些问题可能有助于揭露PHSRN协同结合结构域。小组成员进行的平行研究表明,固定在AFM尖端上的人脐静脉内皮细胞和alpha5β1整合素优选与纤连蛋白模拟肽结合,该肽在接头和中等长度的间隔区中既包含亲水性残基,又包含疏水性残基。三维支架才能蓬勃发展。为了将纤连蛋白模拟肽并入三维结构,将单个烃尾连接以形成肽两亲物。已显示,单头肽-两亲物在筛选首基中的静电荷后会在溶液和凝胶中形成纳米纤维。这些凝胶有望作为组织工程的支架。设计包含连接物的纤连蛋白模拟肽-两亲物,所述连接物具有交替的疏水和亲水残基,以在溶液中形成纳米纤维。确定肽-两亲物的临界胶束浓度为38μM,并且所有随后的实验均在该浓度以上进行。圆二色性(CD)光谱表明,肽-两亲物的肽头基形成α+β二级结构。而游离肽形成随机的二级结构。低温透射电子显微镜(cryo-TEM)和小角度中子散射表明,肽-两亲物自组装成纳米纤维。低温TEM图像显示了直径为10 nm,长度约为微米的单根纳米纤维。较高的肽两亲物浓度图像显示了单个纳米纤维之间发生束缚的迹象,这可能在较高浓度下引起胶凝行为。所述肽-两亲物以高于6mM的浓度形成凝胶。用振荡板流变仪分析10 mM样品,发现其弹性模量在活组织范围内,显示出可能作为组织工程的支架。

著录项

  • 作者

    Rexeisen, Emilie Lynn.;

  • 作者单位

    University of Minnesota.;

  • 授予单位 University of Minnesota.;
  • 学科 Engineering Biomedical.;Engineering Materials Science.;Engineering Chemical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号