首页> 外文学位 >A mathematical investigation of the consequences of metabolic regulation in complex pathways: The cybernetic approach.
【24h】

A mathematical investigation of the consequences of metabolic regulation in complex pathways: The cybernetic approach.

机译:对复杂途径中代谢调节的后果进行数学研究:控制论方法。

获取原文
获取原文并翻译 | 示例

摘要

Advances in biology have resulted in bioprocesses competing increasingly with chemical technologies for the manufacture of chemical and pharmaceutical products. Thus, chemical engineers have to assume new roles to design reactors with living cells which comprise intricate networks of enzyme catalyzed reactions. The cellular enzymes are themselves manipulated in response to environmental stimuli. This phenomenon, termed metabolic regulation, is a defining feature of biosystems as cells can not only change the extents of different reactions, but also decide which reactions to activate or exclude. The consequence of this versatility is extreme non-linearity with which engineering models must contend with for bioreactor optimization and control. Cellular environmental changes can cause variation in fluxes throughout the network and drastically affect the production of a desired secondary metabolite. Clearly, existing coarse models that rely on small sets of reactions, such as the uptake of selected substrates, to account for regulation cannot capture detailed pathways. This thesis, therefore, focuses on a much needed rational approach for large-scale metabolic modeling. The strategy presented builds on the cybernetic framework successful at predicting different substrate utilization patterns and expands it to address detailed pathway modeling.; The cybernetic framework perceives cells as optimal strategists which allocate limited cellular resources to groups of reactions. Objective functions are identified for elementary convergent, divergent, cyclic and linear pathways. This thesis projects a systematic algorithmic approach to identify elementary pathways in large networks The accompanying cybernetic competitions are identified using experimental flux measurements. The strategy has been applied to a hybridoma reactor problem of practical importance. Metabolic fluxes are used to construct a model which is successful in explaining the observed multiplicity of steady states with varying biomass, antibody and waste metabolite concentrations. The significant finding is that the cells seem to maximize substrate uptake leading to different metabolic states depending on the batch or fed-batch startup strategy employed. These metabolic states correspond to multiple steady states in continuous culture. Bifurcation analysis carried out on this and other cybernetic models suggests novel reactor start-up strategies beyond revealing interesting non-linear phenomena such as multiple steady states and periodic behavior.
机译:生物学的进步导致生物过程与化学技术在制造化学和药物产品方面的竞争日益激烈。因此,化学工程师必须承担起设计具有活细胞的反应器的新角色,所述活细胞包括复杂的酶催化反应网络。细胞酶本身是响应环境刺激而被操纵的。这种现象称为代谢调节,是生物系统的定义特征,因为细胞不仅可以改变不同反应的程度,而且可以决定激活或排除哪些反应。这种多功能性的结果是极端非线性,生物反应器的优化和控制必须采用工程模型来应对。细胞环境的变化会导致整个网络通量的变化,并严重影响所需次级代谢产物的产生。显然,依赖于少量反应(例如对选定底物的吸收)来进行调节的现有粗略模型无法捕获详细的途径。因此,本论文着眼于大规模代谢建模急需的合理方法。提出的策略建立在控制论框架的基础上,该框架成功地预测了不同的底物利用率模式,并将其扩展为解决详细的路径建模问题。控制论框架将细胞视为最佳战略家,他们将有限的细胞资源分配给反应组。确定了基本的收敛,发散,循环和线性路径的目标函数。本文提出了一种系统的算法方法来识别大型网络中的基本路径。伴随的控制论竞赛是通过实验通量测量来识别的。该策略已应用于具有实际重要性的杂交瘤反应器问题。代谢通量用于构建一个模型,该模型成功地解释了观察到的具有变化的生物量,抗体和废物代谢物浓度的稳态的多样性。重大发现是,根据所采用的分批或补料分批启动策略,细胞似乎使底物摄取最大化,从而导致不同的代谢状态。这些代谢状态对应于连续培养中的多个稳态。在此模型和其他控制论模型上进行的分叉分析表明,除了揭示有趣的非线性现象(例如多个稳态和周期性行为)以外,反应堆的启动策略还新颖。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号