首页> 外文学位 >Ultrasonic Sealing of PEM Fuel Cell Membrane Electrode Assemblies.
【24h】

Ultrasonic Sealing of PEM Fuel Cell Membrane Electrode Assemblies.

机译:PEM燃料电池膜电极组件的超声波密封。

获取原文
获取原文并翻译 | 示例

摘要

An alternative to fossil fuels will need to be implemented on a world wide scale in order to maintain our current standard of living without adversely impacting the environment. Solar, wind, and other renewable energies are abundant and clean sources that are currently underutilized primarily due to high cost compared to fossil fuels. Fuel cells can be a part of the solution to our energy and environmental problems. For example, solar energy can be used to generate hydrogen, which can be stored and then used with a fuel cell to convert the hydrogen to electricity and heat for your home or transportation when and where you need it. In order to have fuel cells and their subassemblies, including Membrane Electrode Assemblies (MEA), become commercial viable products, the MEA production cycle times will need to improve from minutes to seconds or milliseconds. The MEAs will also need to be produced more affordably and with higher quality standards to meet the anticipated demand. Sealing the MEAs with ultrasonic bonding provides an alternative assembly process to the current practice of pressing components between heated tools using a hydraulic press. Ultrasonic sealing can improve the manufacturing cycle time by an order of magnitude while consuming a fraction of the energy for less capital expenditures all while improving the performance of the MEA.;The details of the theory behind ultrasonic bonding with the application of a relatively small vibration (around 20 microns) at a high frequency (in the range of 20,000 cycles/second) to achieve the heating and bonding of dissimilar materials are viewed more as "black magic" in that the manufacturing process has been utilized in production for many decades, but the theory behind the processes is not completely understood. This research investigates the optimal parameters to ultrasonically seal a high temperature membrane between two electrodes with validation on fuel cell test stands. A mathematical model is derived from vibrational theory and, based on the optimal physical ultrasonic sealing parameters, is combined with the experimentally measured physical properties of the membrane and electrode materials to predict the energy dissipation for each material layer during the ultrasonic sealing of the MEA. A multi-physics simulation expands upon the energy dissipation from the mathematical model and predicts the temperature distributions within the MEA during the ultrasonic sealing process. The temperature distributions of the multi-physics model are validated with comparison to the MEA interface temperatures obtained with hair thin thermocouples placed between layers of the MEA during the ultrasonic sealing process.;The resulting optimized ultrasonic sealing processes and predictive engineering simulation models will assist in the facilitation and implementation of an ultrasonic bonding system into an automated MEA production line, thus advancing the fuel cell component manufacturing one step closer to commercial viability.
机译:化石燃料的替代品将需要在全球范围内实施,以维持我们目前的生活水平,而不会对环境造成不利影响。太阳能,风能和其他可再生能源是充足的清洁能源,目前主要由于与化石燃料相比成本高而未得到充分利用。燃料电池可以成为解决我们的能源和环境问题的一部分。例如,太阳能可用于产生氢气,然后将其存储并与燃料电池一起使用,将氢气转化为电能和热量,以供您在家中或在需要的地方运输。为了使燃料电池及其子组件(包括膜电极组件(MEA))成为商业上可行的产品,MEA的生产周期将需要从数分钟缩短至数秒或毫秒。 MEA的生产也将需要以更经济的价格和更高的质量标准来满足预期的需求。用超声粘合密封多边环境协定为使用液压机在加热工具之间压制部件的当前做法提供了另一种组装方法。超声波密封可以将制造周期缩短一个数量级,同时消耗一部分能量,从而降低资本支出,同时改善MEA的性能。超声波焊接背后的理论原理以及相对较小的振动(大约20微米)的高频(在20,000个循环/秒的范围内)以实现异种材料的加热和粘结,这被视为“黑魔法”,因为制造过程已在生产中使用了数十年,但过程背后的理论尚未完全理解。这项研究研究了超声参数密封两个电极之间的高温膜的最佳参数,并在燃料电池测试台上进行了验证。从振动理论中得出数学模型,并基于最佳的物理超声密封参数,将其与膜和电极材料的实验测量物理特性相结合,以预测MEA超声密封期间每个材料层的能量耗散。多物理场仿真扩展了数学模型的能量消耗,并预测了超声波密封过程中MEA内部的温度分布。通过与在超声密封过程中放置​​在MEA层之间的细热电偶之间的MEA界面温度进行比较,验证了多物理场模型的温度分布;由此产生的优化的超声密封过程和预测性工程仿真模型将有助于促进和将超声波键合系统应用于自动MEA生产线,从而使燃料电池组件的制造更接近于商业可行性。

著录项

  • 作者

    Snelson, Todd T. B.;

  • 作者单位

    Rensselaer Polytechnic Institute.;

  • 授予单位 Rensselaer Polytechnic Institute.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号