首页> 外文学位 >Exploiting lower dimensional models for efficient three-dimensional finite element analysis.
【24h】

Exploiting lower dimensional models for efficient three-dimensional finite element analysis.

机译:利用低维模型进行有效的三维有限元分析。

获取原文
获取原文并翻译 | 示例

摘要

There are two broad strategies for 3-D structural analysis today: (I) classical or simplified modeling, and (2) 3-D modeling. Classical modeling is applicable when the underlying geometry and physics exhibits special properties. For example, 2-D plane-stress, 1-D beam, 2d plate / shell or 2-D axi-symmetric approximations fall under this category. Such simplified models are computationally efficient, but with increased geometric complexity justification and automated construction of reduced models is cumbersome. Moreover, the inability of these reduced models to capture 3-D stress limits their use to certain applications.;If the model cannot be simplified, or when stress prediction is critical, one must use a 3-D method, among which finite element analysis (FEA) is most popular. However, 3-D FEA typically results in a large system of equations that can be computationally challenging to solve.;The main contribution of this thesis is a novel framework that integrates classical methods with 3-D FEA, for faster and accurate iterative analysis. An implementation of the framework for thin structure analysis is presented here. The proposed framework uses standard 3-D finite element formulation for assembling the linear systems of equations over the full 3-D solid. However, these equations are solved with the help of reduced beam or plate models. This is achieved by combining the multi-grid idea with recently developed dual-representation method.;In the proposed scheme, the multi-grid setup provides the necessary framework for bi-directional sweeping, where high-frequency components of displacement formulation are smoothed out using 3-D ETA. and low-frequency components are captured via reduced models. Finally, dual-representation provides an accurate and easily computable reduced dimension stiffness matrix, based on actual 3-D geometry, accounting for all 3-D features.;Numerical examples are presented to illustrate that the proposed method not only leads to significant computational gains over pre-conditioned iterative methods. but also has the flexibility to incorporate existing pre-conditioners within its framework Since 3-D FEA forms the basis of the method, it can accurately capture stress concentration as well.
机译:如今,有3种主要的3-D结构分析策略:(I)经典或简化建模,以及(2)3-D建模。当基础几何和物理表现出特殊属性时,经典建模适用。例如,二维平面应力,一维梁,二维板/壳或二维轴对称近似值属于此类。这种简化的模型在计算上是有效的,但是随着几何复杂度的提高,简化模型的自动构建也很麻烦。此外,这些简化的模型无法捕获3-D应力将其使用限制在某些应用中;如果无法简化模型或在应力预测至关重要时,则必须使用3-D方法,其中包括有限元分析(FEA)最受欢迎。但是,3-D FEA通常会导致大型方程组,这在计算上很难解决。;本文的主要贡献是将经典方法与3-D FEA集成在一起的新颖框架,可以更快,更准确地进行迭代分析。此处介绍了薄结构分析框架的实现。拟议的框架使用标准的3-D有限元公式在整个3-D实体上组装方程的线性系统。但是,这些方程式是通过减少梁或板模型来求解的。这是通过将多网格思想与最近开发的双重表示方法相结合来实现的;在所提出的方案中,多网格设置为双向扫描提供了必要的框架,从而消除了位移公式化的高频分量使用3-D ETA。低频分量则通过简化模型捕获。最后,双重表示基于实际的3D几何形状,并考虑了所有3D特征,提供了一个精确且易于计算的降维刚度矩阵。数值示例说明了该方法不仅带来了可观的计算收益超过预处理的迭代方法。而且还可以灵活地将现有的预处理器纳入其框架中。由于3-D FEA构成了该方法的基础,因此它也可以准确地捕获应力集中。

著录项

  • 作者

    Mishra, Vikalp.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Applied Mechanics.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 113 p.
  • 总页数 113
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号